

Duke Realty Foundry LP 7825 San Leandro Street Oakland, California 94621

May 13, 2024

Ms. Dilan Roe Alameda County Health Care Services Agency Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

RE: AB&I Redevelopment – Acknowledgement Statement 7825 San Leandro Street Oakland, California 94621 ACEHD Case No. RO0003535

Dear Ms. Roe:

Duke Realty Foundry LP has retained the environmental consultant referenced on the attached *Revised Site Conceptual Model and Data Gap Investigation Work Plan* dated May 13, 2024, for the project referenced above. The attached report is being submitted on behalf of Duke Realty Foundry LP.

I have read and acknowledge the content, recommendations, and/or conclusions contained in the attached document or report submitted on my behalf to the State Water Resources Control Board GeoTracker website.

Sincerely,

DocuSigned by: -F1100758A2414F7...

Gavin Polite Fisco Director, Global Environmental & Engineering Services Duke Realty Foundry LP

cc: Blair Rushing, Duke Realty Foundry LP
 Andrew York, Alameda County Environmental Health Department
 Joshua Osborne, PG, Roux Associates, Inc.
 Richard Maxwell, Roux Associates, Inc.

Revised Site Conceptual Model and Data Gap Investigation Work Plan

AB&I Redevelopment 7825 San Leandro Street Oakland, California Alameda County LOP Case No. RO0003535

May 13, 2024

Prepared for:

Duke Realty Foundry LP (Prologis)

Prepared by:

Roux Associates, Inc. 555 12th Street, Suite 250 Oakland, California 94607

Environmental Consulting & Management +1.800.322.ROUX rouxinc.com

Table of Contents

Certification	1
1. Introduction	2
2. Background	3
2.1 Site Description and Historical Use	3
2.2 Previous Environmental Activities	
2.2.1 Leaking Underground Storage Tank Removal	3
2.2.2 Soil and Groundwater Assessment – 2006	4
2.2.3 Groundwater and Soil Vapor Investigations – 2007 to 2010	
2.2.4 In Situ Remediation – 2009	
2.2.5 Request for Site Closure	
2.2.6 Well Decommissioning Report	
2.2.7 Phase I Environmental Assessment and Limited Phase II Investigation	
2.2.8 Passive Soil Gas and Groundwater Investigation	
2.3 Proposed Site Development	6
3. Site Conceptual Model (SCM)	7
3.1 Site History	7
3.2 Site Geology and Hydrogeology	7
3.2.1 Site Geology	7
3.2.2 Site Hydrogeology	7
3.3 Potential Contaminants of Concern	
3.4 Data Gaps	9
4. Data Gap Investigation	10
4.1 Health and Safety Plan	10
4.2 Utility Location and Borehole Clearance	10
4.3 Permits	10
4.4 Additional Soil Gas Sampling	10
4.4.1 Proposed Additional Passive Soil Gas Sampling	10
4.4.2 Proposed Active Soil Gas Sampling	
4.5 Additional Soil Sampling	
4.6 Grab Groundwater Sampling	
4.6 Quarterly Groundwater Monitoring Activities	
4.7 Waste Management	
4.8 Field Quality Control	
4.9 Surveying	
4.10 Data Quality Evaluation	
4.10.1 Leak Check	
4.10.1.1 Negative Pressure Shut-in Test	
4.10.1.2 Helium Shroud Test	
4.10.2 Downhole Vacuum & Sample Duration 4.10.3 Canister Pressure: Initial	
4.10.3 Canister Pressure: Initial	
4.10.5 Hold-Time	17

	4.10.6 Dilution Factors and Reporting Limits	
	4.10.7 Canister and Laboratory Certification	. 17
	4.10.8 Surrogate & Laboratory Control Sample Recovery	. 17
	4.10.9 Method Blanks	. 17
	4.10.10 Duplicate/Replicate Samples	. 17
	4.10.11 Field Note Validation	. 18
5.	Reporting	. 19
6.	Scheduling	. 20
7.	References	. 21

Tables

1. Proposed Sampling Analysis Plan (SAP)

Figures

- 1. Site Location Map
- 2. Site Plan With Historical Sampling Locations
- 3. Groundwater Contour Map
- 4A. Proposed Grab Groundwater and Soil Vapor Sampling Locations
- 4B. Proposed Grab Groundwater and Soil Vapor Sampling Locations with PCE Soil Vapor Heat Map
- 4C. Proposed Grab Groundwater and Soil Vapor Sampling Locations with TCE Soil Vapor Heat Map
- 4D. Proposed Grab Groundwater and Soil Vapor Sampling Locations with Benzene Soil Vapor Heat Map
- 5A. Proposed Soil and Groundwater Sampling Locations
- 5B. Proposed Soil and Groundwater Sampling Locations with ACEHD Modeled Sand Layers

Appendices

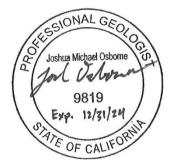
- A. Site Conceptual Model
- B. Soil Gas Isoconcentration Maps (Heat Maps)
- C. Cross Sections
- D. Boring Logs
- E. Standard Operating Procedures
- F. Field Sampling Forms
- G. TTLC, STLC, and TCLP Threshold Trigger Values

Certification

Revised Site Conceptual Model and Data Gap Investigation Work Plan

7825 San Leandro Street Oakland, California

May 13, 2024 Project Number 1793.0030S000


This Site Revised Conceptual Model and Data Gap Investigation Work Plan was prepared by Roux Associates, Inc., under the professional supervision of Joshua Osborne, PG. The specifications and/or professional opinions presented in this study were prepared in accordance with generally accepted professional practice, and within the scope of the project. There is no other warranty, either expressed or implied.

Pianpian Wu, P.E. Project Engineer

maywell 1

Richard Maxwell Principal Geologist

Joshua Osborne, P.G. Senior Geologist I

1. Introduction

On behalf of Duke Realty Foundry LP (Prologis), Roux Associates, Inc. (Roux) has prepared this *Revised Site Conceptual Model and Data Gap Investigation Work Plan* (Revised Work Plan) for the proposed redevelopment at the former American Brass & Iron (AB&I) Foundry Site located at 7825 San Leandro Street in Oakland, California (Site; Figure 1).

The Alameda County Department of Environmental Health Department (ACEHD) Local Oversight Program (LOP) for Hazardous Materials Releases is the lead regulatory agency for the Site. Environmental investigations and clean-up actions at the Site are being undertaken under the oversight of that agency's Site Clean-up Program (SCP), with GeoTracker Global ID T10000019792 and ACEHD Case Number R00003535.

Roux conducted a Passive Soil Gas and Groundwater Investigation (2023 Investigation) in August 2023. The results of the 2023 Investigation were presented in the *Passive Soil Gas and Groundwater Investigation Report* dated and submitted to ACEHD on October 4, 2023 (Roux, 2023a). Roux prepared a Site Conceptual Model (SCM) detailing information from the 2023 Investigation and previous investigations and identifying relevant environmental data gaps (Appendix A). The results and findings provide data sufficient to guide additional site characterization activities. This Revised Work Plan has been prepared to further:

- 1) Delineate volatile organic compounds (VOCs) in passive soil gas at the Site;
- 2) Assess benzene in soil vapor (soil gas) in three distinct areas at the Site;
- 3) Assess active soil vapor and bioattenuation through the installation of soil vapor probes; and
- 4) Analyze the extent of potential vapor intrusion in soil vapor beneath the Site.

The scope of work included herein was discussed in meetings between Roux, Prologis, Craig Communications, and the ACEHD on October 17, 2023, March 25, 2024, April 19, 2024, and April 23, 2024. This Revised Work Plan has been prepared to address ACEHD's comments related to the 2023 Investigation and our proposed scope of work presented in the *Conceptual Supplemental Subsurface Investigation Memorandum* dated October 16, 2023 (Roux, 2023b). Additionally, revisions implemented throughout this Revised Work Plan have considered comments provided by ACEHD, dated March 7, 2024, and May 9, 2024.

2. Background

2.1 Site Description and Historical Use

The Site consists of the former AB&I Foundry located at 7741, 7825, and 7929 San Leandro Street in Oakland, California (Figure 1). For simplicity and consistency with regulatory communication, 7825 San Leandro Street will be used to reference the location. The Site consists of approximately 14.5 acres in a mixed commercial/industrial land use area. The Site was previously developed with a two-story office building, multiple warehouses, a foundry and manufacturing building, a material storage area, and a parking lot. Demolition of all aboveground/vertical structures was completed in December 2023 as part of the planned redevelopment.

The Site is bounded by commercial/industrial properties to the north, south, east, and west. Union Pacific Railroad is located to the west, Oakland Truck Stop to the east, Elmhurst Creek along the southeast property corner, and San Leandro Bay is located approximately one mile to the west. The nearest residential areas are located approximately 810 feet northeast of the Site and 680 feet southwest of the Site.

The former Site owner and operator (AB&I) operated at the Site from at least 1940 until October 2022. During foundry operations, the Site was utilized for the manufacture of pipe and pipe fittings. Operations at the Site included the production of cast iron for the manufacturing of fittings and pipe from recycled scrap iron. The facility accepted scrap iron, pig iron, and steel, which it stockpiled on-Site to produce cast iron for fitting and pipe manufacturing operations. Major operations involved scrap metal melting, mold making, fitting and pipe casting, and final finishing and coating of pipes and fittings. A majority of the Site is covered with concrete and asphalt/concrete pavement, except the area where scrap metal was stockpiled (AB&I, 2011a). AB&I ceased foundry operations in October 2022 and vacated the Site in April 2023.

2.2 **Previous Environmental Activities**

A summary of previous environmental investigation activities and associated results are provided below.

2.2.1 Leaking Underground Storage Tank Removal

Seven underground storage tanks (USTs) were previously located on the Site, including:

- One 8,000-gallon UST used for storing unleaded gasoline;
- One 8,000-gallon UST used for the storage of mineral spirits, and later 1,1,1-trichloroethane (1,1,1-TCA);
- One 550-gallon UST used for storing regular leaded gasoline;
- One 10,000-gallon UST used for storing diesel; and
- Three 10,000-gallon USTs used for storing gasoline.

All USTs were removed from the Site between 1982 and the early 1990s. The ACEHD provided regulatory oversight of the Leaking Underground Storage Tank (LUST) case (RO0000092) and closed the case in November 2011 with a covenant and environmental restriction that limits future land use to industrial purposes (AB&I, 2010a; AB&I, 2011a).

2.2.2 Soil and Groundwater Assessment – 2006

In July/August 2006, an assessment of soil and groundwater was conducted as part of a property transfer. The assessment consisted of sampling three existing monitoring wells (MW-1, MW-3, and MW-4); abandoning damaged well MW-2; and installing and sampling six new groundwater monitoring wells (MW-2R, and MW-5 through MW-9). Soil samples were collected at various depth intervals during the installation of monitoring wells MW-5 through MW-8. Results of the assessment were presented in the Preliminary Groundwater Investigation Report,¹ which indicated that five of the nine wells had concentrations of at least one compound that exceeded their respective United States Environmental Protection Agency (USEPA) maximum contaminant level (MCL) or California Regional Water Quality Control Board (RWQCB) environmental screening level (ESL) for groundwater, impacting a current or potential source of drinking water (BSK, 2007).

2.2.3 Groundwater and Soil Vapor Investigations – 2007 to 2010

On behalf of AB&I, the Source Group, Inc. (SGI), conducted additional soil, groundwater, and soil vapor investigations in 2007, 2008, 2009, and 2010. The results of these investigations indicated that groundwater in the vicinity of the parking lot area (located in the vicinity and northwest of former well MW-8; Figure 2) was impacted with volatile organic compounds (VOCs), including 1,1,1-TCA; 1,1-dichloroethane; 1,1-dichloroethene (1,1-DCE); chloroethane; cis-1,2-dichloroethene (cis-1,2-DCE); trans-1,2-dichloroethene; and vinyl chloride. Groundwater in the vicinity of the former three 10,000-gallon USTs (located in the vicinity of former well MW-9) was impacted with petroleum hydrocarbons, including benzene; toluene; ethylbenzene; and xylenes (BTEX), TPH-g, and TPH-d (AB&I, 2008a; AB&I, 2008b; AB&I, 2008c; AB&I, 2009a; AB&I, 2009b; AB&I, 2009c; AB&I, 2009d; AB&I, 2010a; AB&I, 2010b).

Results of the soil vapor analysis indicated that benzene, ethylbenzene, vinyl chloride, and tetrachloroethene (PCE) were detected at concentrations exceeding 2007 RWQCB ESLs² under the commercial/industrial land use scenario. SGI conducted a site-specific risk assessment, which concluded that the risks posed by soil gas concentrations were acceptable, and no further action was recommended (AB&I, 2009b). The ACEHD concurred with the report conclusions in a letter dated May 20, 2009 (ACEHD, 2009).

2.2.4 In Situ Remediation – 2009

In order to address residual petroleum hydrocarbons and VOCs in groundwater, enhanced anaerobic biodegradation injections occurred in June 2009 beneath the parking lot area (near former MW-3 and MW-8) and aerobic biodegradation injections occurred near the former three 10,000-gallon USTs (near former MW-9). Groundwater monitoring was performed between 2009 and 2010 to track the progress of bioremediation in the subsurface (AB&I, 2009c; AB&I, 2009d; AB&I, 2010a; AB&I, 2010b). In a letter dated March 2, 2010, the ACEHD indicated that no further active remediation was required at that time (ACEHD, 2010).

2.2.5 Request for Site Closure

On behalf of AB&I, SGI prepared a semi-annual report that described the results of first and second quarter 2010 groundwater monitoring activities, and formally requested Site closure. The closure request concluded

¹ The *Preliminary Groundwater Investigation Report* dated June 11, 2007, prepared by BSK Associates, Inc. on behalf of AB&I, was not available for download from the State Water Resources Control Board GeoTracker website.

² Soil gas results were compared to ESLs issued by the RWQCB entitled Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final – November 2007, updated May 2008.

that known UST sources had been removed from the Site, soil gas impacts were low and did not warrant remediation or monitoring, and groundwater concentrations of VOCs and petroleum hydrocarbons were stable or had declined. As such, AB&I proposed preparation of a risk management plan and deed restriction (AB&I, 2010a). In a letter dated April 28, 2011, the ACEHD accepted their proposed course of action and requested submittal of a deed restriction and Site Management Plan (ACEHD, 2011).

2.2.6 Well Decommissioning Report

On October 11, 2011, nine monitoring wells (MW-1, MW-2R, MW-3, MW-4, MW-5, MW-6, MW-7, MW-8, and MW-9) located on the Site were destroyed via tremie grout method in accordance with Alameda County Public Works Agency (ACPWA) requirements. The necessary well destruction permits were obtained, and all well destruction activities were performed under the oversight of SGI and the ACPWA. As required by the California Department of Water Resources, well destruction reports were completed following the destruction of the monitoring wells (AB&I, 2011b).

2.2.7 Phase I Environmental Assessment and Limited Phase II Investigation

As part of the pre-acquisition due diligence process, Haley & Aldrich, Inc. (H&A) completed a Phase I Environmental Assessment at the Site, dated April 2022 (Phase I; H&A, 2022a). The Phase I identified several recognized environmental conditions, which H&A subsequently investigated during a limited Phase II Environmental Investigation, dated May 2022 (Phase II; H&A, 2022b), in which they advanced four soil borings (E-2, E-4, E-5, and E-6) (see Figure 2) and collected soil, soil vapor, and groundwater samples. The 2022 Phase II investigation collected and analyzed a total of eight soil samples, two groundwater samples, and two soil vapor samples.

Soil sample analytical results indicated that shallow soil in the vicinity of E-4, E-5, and E-6 contained benzene in exceedance of 2019 RWQCB Commercial/Industrial ESLs (RWQCB, 2019). Arsenic was detected below the background arsenic concentrations in the region (Duvergé, Dylan Jacques, 2011).

The following compounds were detected in soil vapor in exceedance of their respective Commercial/Industrial ESLs:

- Chloroform (E-2) 21 micrograms per cubic meter (μg/m³)
- Benzene (E-4) 11,000 μg/m³
- Ethylbenzene (E-4) 2,600 μg/m³
- Trichloroethene (TCE) (E-4) 760 µg/m³
- Vinyl chloride (E-4) 74 µg/m³
- Total Petroleum Hydrocarbons as Gasoline (TPH-g) (E4) 820,000 μg/m³

Vinyl chloride was also detected in groundwater at concentrations exceeding its Commercial/Industrial ESL of 0.14 micrograms per liter (μ g/L) for groundwater vapor intrusion human health risk (E-2, 8.87 μ g/L); however, vinyl chloride was not detected in soil vapor sample E-2, which was collected from the same boring as the groundwater sample.

2.2.8 Passive Soil Gas and Groundwater Investigation

Between July 24 and August 9, 2023, Roux conducted the 2023 Investigation at the Site. The purpose of this investigation was to determine if potential Site contaminants have impacted soil vapors and groundwater underlying the Site that may require mitigation or remediation.

To evaluate soil vapor and groundwater at the Site, Roux installed sixty-four (64) passive soil gas samplers and eight (8) groundwater monitoring wells. During well installation activities, soil samples were also collected from varying discrete depths at each well location. The monitoring well locations are shown in Figure 2. The passive soil gas results indicated that PCE, TCE, benzene, and 1,4-dioxane were detected at concentrations exceeding their respective RWQCB Commercial/Industrial ESLs. Heat maps provided by Beacon Environmental (Beacon) are included in Appendix B. The groundwater results indicated that metals (arsenic, barium, chromium, cobalt, lead, and nickel) were detected at concentrations exceeding their respective California MCLs in two or more wells. No other analytes, including pesticides and polychlorinated biphenyls (PCBs) were detected in groundwater above their respective California MCLs or RWQCB Commercial/Industrial ESLs. A groundwater elevation contour map is provided in Figure 3. The soil results indicated that arsenic, lead, and total petroleum hydrocarbons as diesel (TPH-d) were detected at concentrations exceeding their respective RWQCB Commercial/Industrial ESLs. Further details are available in the *Passive Soil Gas and Groundwater Investigation Report* (Roux, 2023a).

2.3 Proposed Site Development

Prologis intends to redevelop the Site with the construction of an approximately 320,000-square-foot warehouse building and associated parking lot. The proposed warehouse building footprint is shown in Figure 2. The Data Gap Investigation proposed herein is meant to further define the extent of subsurface impacts to soil, soil gas, and groundwater. Additionally, this investigation will support the redevelopment of the Site so that potential contaminants (if any) can be effectively remediated and/or mitigated to prevent exposure by construction workers and/or future Site workers.

3. Site Conceptual Model (SCM)

This section discusses the Site Conceptual Model (SCM), which was prepared based on the results of the 2023 Investigation completed in July/August 2023 and previous investigations. The SCM is provided in Appendix A.

3.1 Site History

For details regarding the Site history, see Section 2.0 above and the SCM in Appendix A.

3.2 Site Geology and Hydrogeology

3.2.1 Site Geology

The Site is a flat parcel ranging in elevation between 11.5 and 14.5 feet.³ As discussed above, the Site is located approximately one mile east of the San Francisco Bay and is bounded to the south by Elmhurst Creek. The Arroyo Viejo Creek lies to the northwest of the Site across Hegenberger Road. The Site is within an area identified as the East Bay Plain. The East Bay Plain is situated on the east side of the San Francisco Bay depression. The alluvial sediments of the East Bay Plain consist of a mixture of gravel, sand, and clay deposited by coalescing alluvial fans. In the vicinity of the Site, alluvial and estuarine deposits have been mapped (Helley et. al., 1979). The fluvial deposits are described as "unconsolidated, moderately sorted, fine sand and silt, with clayey silt and occasional thin beds of coarse sand" (Muir, K.S., 1993). The near-shore deposits are described as "a well-sorted, fine to medium grained sand and silt, with lenses of sandy clay and clay" (AB&I, 2010a).

Borings advanced at the Site between 1993 and 2023 have extended to a total approximate depth of 81 feet bgs. Soils encountered in the unsaturated and saturated zones beneath the Site are predominantly fill material (well graded sand) and lean/fat clay with interfingered lenses of mixtures that include sand, silt, clay, and gravel to the maximum depth explored. Borings logs completed by Roux and others indicate that lean and fat clays dominate the lithology below the Site with lesser amounts of gravel, sand, and silt as shown in the cross sections (Appendix C). Little correlation between coarse grained units is observed from the available boring logs at the Site. Available boring logs are provided in Appendix D.

3.2.2 Site Hydrogeology

As detailed in Section 2.2.8, Roux installed eight groundwater monitoring wells (MW-10 through MW-17) in 2023 to evaluate groundwater conditions across the Site. The wells were installed around the perimeter of the Site to establish the groundwater gradient and flow direction. MW-10 through MW-17 were screened across the first encountered zones of groundwater based on soils logged from each borehole. Due to the complex shoreline lithology at the Site, the wells were screened across a range of depths as shown on the cross sections (Appendix C) and boring logs (Appendix D). Although the wells have unique screening intervals, potentiometric surface measurements across the Site likely indicate that six out of eight of the wells (MW-10, MW-11, and MW-13 through MW-15, and MW-17) are screened across an aquifer of similar confining pressure, and as such, are hydraulically connected to each other. MW-12 and MW-16 have demonstrated slightly lower groundwater levels during monitoring events suggesting that they may not be hydraulicly connected to the other existing wells at the Site.

³ All vertical elevations are referenced to the North American Vertical Datum of 1988 (NAVD 88).

Shallow groundwater conditions are observed at the Site with water levels in historical (prior to well destruction in 2011) and existing monitoring wells (August 2023) ranging between 4.55 and 7.91 feet bgs. Based on August 2023 groundwater level monitoring data collected from existing wells MW-10 through MW-17, the Site-specific groundwater flow direction and gradient appears radial (Figure 3). Gradients under these assumptions across the Site ranged between 0.0027 and 0.067 feet/feet based on the monitoring well data. The groundwater gradient at the Site is suspected to be partially influenced by Elmhurst Creek and Arroyo Viejo Creek and the proximity of the Site to the historical San Leandro Bay margin also suggests that tidal influence may be contributing to the variable flow directions observed in monitoring data. Historical groundwater monitoring data indicated that groundwater generally flowed to the northwest at a hydraulic gradient of approximately 0.006 feet per foot (ft/ft) (AB&I, 2010a), however, these wells were spatially limited relative to the overall footprint of the Site. Although radial groundwater flow conditions are suggested by the monitoring data from MW-12 and MW-16 may not be representative of the shallowest aquifer at the Site and, as a result, altering the perceived gradient.

As radial groundwater conditions are unlikely at this Site due to the absence of any significant hydraulic sink (i.e., groundwater extraction wells), the groundwater flow direction at the Site has been interpreted based on modeling conducted by ACEHD (ACEHD subsurface modeling figure set presented in Appendix A) and the regional geologic framework flowing to the northwest. For the purposes of this investigation, this interpreted groundwater flow direction has been assumed informing the location of targeted groundwater samples across the Site. The interpreted northwesterly groundwater flow direction is generally consistent with observations made during historical groundwater monitoring events by others (BSK, 1993, AB&I, 2010a, AB&I, 2010b).

Based on lithologic data shown in the cross sections, it appears that the water bearing zone consists of discontinuous lenses of coarse-grained materials between 10 and 25 feet bgs across the Site, however, ACEHD modeling results (Appendix A) suggest that multiple sand layers at the Site are more continuous than previously interpreted. Based on observations during well installation and monitoring and analysis of lithology across the Site by Roux and ACEHD, confined groundwater conditions may be present at the Site.

Although groundwater in the East Bay Plain is generally considered a potential future source of drinking water, there are no permitted drinking water wells within one mile of the Site, nor is the shallow groundwater in this area likely to be used as a public drinking water source in the foreseeable future (AB&I, 2008a).

3.3 Potential Contaminants of Concern

Based on historical and nearby Site operations as well as analytical data associated with previous investigation activities, the following potential contaminants of concern (PCOCs) have been identified, and/or may be present, at the Site. The table below lists the PCOCs associated with the Site, as well as their potential source(s).

PCOC	Potential Source(s)
Metals (primarily lead, arsenic, barium, chromium, cobalt, and nickel) in soil and/or groundwater	Historical use of the Site as a foundry and former residential dwellings and other buildings present on the Site since 1925.
TPH-g, TPH-d in soil and/or groundwater	Historical industrial use of the Site as a foundry and petroleum hydrocarbons stored/released proximate to the former USTs, fuel dispensers, aboveground storage tanks (ASTs), and storage facility and yard areas.

PCOC	Potential Source(s)
VOCs, including benzene, 1,1-dichloroethane, 1,2-dichloroethane, 1,4-dioxane, vinyl chloride, and naphthalene, in soil gas and/or groundwater possibly posing a vapor intrusion risk	Historical industrial use of the Site as a foundry and VOC-containing chemicals stored/released proximate to the former USTs, ASTs, wastewater treatment plant, and special finishing storage facility. VOCs were detected at concentrations exceeding screening criteria in soil gas and/or groundwater in multiple locations across the Site.

3.4 Data Gaps

During the development of the SCM, various data gaps were identified. Table 1 outlines a proposed Sampling Analysis Plan (SAP) with proposed sampling locations illustrated on Figures 4 and 5. The SAP is designed to address the data gaps related to soil and soil vapor impacts previously identified at the Site, and for the proposed development of the Site.

- In order to delineate elevated concentrations of chlorinated volatile organic compounds (cVOCs) observed proximate to PSG-10, PSG-25, PSG-41 and PSG-62, Roux proposes to install and sample additional passive soil gas (PSG) samplers on a denser grid spacing (25-foot x 25-foot) in those areas. Active soil gas samples will also be collected from permanent soil vapor probes co-located at PSG-10, PSG-25, PSG-41, and PSG-62 to: (1) confirm the accuracy of the PSG results; (2) obtain fixed gas data; and (3) assess the vertical extent of cVOC impacts in soil vapor;
- Benzene was observed in multiple areas at concentrations above 2019 RWQCB Commercial ESLs, based on an attenuation factor of 0.03. Roux proposes to collect active soil gas samples from probes installed in 10 areas near PSG-06, PSG-13, PSG-25, PSG-32, PSG-35, PSG-52, PSG-45, PSG-53, PSG-57and PSG-61 to confirm the accuracy of the PSG results and to collect fixed gas data so that bioattenuation can be assessed;
- Elevated concentrations of arsenic, lead, and TPH-d have been identified in soil; in preparation of the
 anticipated redevelopment of the Site, Roux proposes to characterize the soil on a 150-foot x 150-foot
 grid pattern throughout the Site. Soil characterization will include advancing soil boings to 5 to 10 feet
 bgs. Soil characterization sampling will also characterize areas of proposed soil disturbance including
 utility corridors and bio swales;
- Elevated vinyl chloride has been detected in groundwater from MW-12. Roux proposes to advance four dual depth grab groundwater borings (GW-1 through GW-4) to the north, west, and south of MW-12 to delineate vinyl chloride impacts in shallow groundwater in the vicinity of MW-12;
- Following Site demolition activities in 2023, 12 pits were identified extending below the existing grade at the Site. To investigate any potential impacts associated with these pits, eight soil and grab groundwater sample locations have been proposed;
- Elevated detections of PCE and TCE have been detected in passive soil gas samples PSG-25 and PSG-41. Roux proposes to advance grab groundwater borings (G-5 and GW-6) in the vicinity of each of these elevated cVOCs to assess impacts to groundwater in these areas; and,
- In addition, quarterly groundwater monitoring will continue to be conducted to further assess the cVOC, TPH, and metal impacts in groundwater beneath the Site.

For additional information regarding data gaps, see Sections 1.0 through 5.0 of the SCM (Appendix A).

4. Data Gap Investigation

This section provides details regarding the scope of work for the Data Gap Investigation.

4.1 Health and Safety Plan

Roux will prepare a Site-specific Health and Safety Plan (HASP) to provide guidelines to all Site workers and visitors during fieldwork. The HASP will be kept on-Site at all times when fieldwork is occurring and will be reviewed and signed by all Site workers prior to work each day.

4.2 Utility Location and Borehole Clearance

Roux will contact Underground Service Alert (USA) a minimum of 48 hours prior to subsurface activities to notify utility operators of the planned work and to request the marking of nearby utilities (i.e., natural gas, electric, water, sewer, telephone, fiber optic, etc.). Additionally, Roux will contract with a private geophysical services and utility locating firm to evaluate the proposed boring locations and mitigate the risk of disrupting potential subsurface utility lines. In addition, all soil and soil vapor boring locations will be hand cleared to 3 to 5 feet bgs using a hand auger per Roux's safety requirements.

4.3 Permits

Prior to any subsurface investigations, Roux will obtain permits for all borings from the ACPWA.

4.4 Additional Soil Gas Sampling

Additional investigation is needed in four areas due to elevated concentrations of cVOCs detected in soil gas. Further assessment of benzene in soil gas is warranted in three distinct areas of the Site. A summary of the proposed soil gas sampling is shown in Table 1.

4.4.1 Proposed Additional Passive Soil Gas Sampling

In order to delineate elevated concentrations of cVOCs observed proximate to PSG-10, PSG-25, PSG-41, and PSG-62, Roux proposes to install and sample additional PSG samplers on a denser grid spacing (25-foot x 25-foot) in those areas. Similar to the 2023 Investigation, PSG samplers will be provided by Beacon Environmental (Beacon). Sample locations are depicted in Figures 4A though 4D. PSG samplers utilize adsorbent media placed within the subsurface to identify VOCs in the shallow vadose zone over a time-integrated sampling period. Roux will install and collect the PSG samplers, per the standard operation procedure (SOP) provided by Beacon and included in Appendix E for reference. The samples will be submitted to Beacon for analytical testing. Roux will document all installation and sample collection using field forms as shown in Appendix F.

Installation of Passive Soil Gas Sampling Points

The drilling contractor will advance a 1.5-inch-diameter boring to a depth of 1-foot bgs using a rotary hammer drill. The borings will then be advanced to terminal depths of approximately 3 feet below the bottom of the hardscape (concrete/asphalt) or below the surface in soil/gravel areas using a 0.5-inch diameter drill bit. Roux will install the PSG samplers in accordance with the Standard Operating Procedure for Installation and Collection of Passive Soil Gas Samplers for Laboratory Analysis (SOPs; Appendix E). Once installed, the PSG sampler borings will be sealed at the surface and covered with concrete to avoid the flow of ambient air into the subsurface during sampling as described in the SOPs.

Passive Soil Gas Sample Collection and Chemical Analysis

Roux will collect the PSG samplers after a minimum exposure period of 14 days and each will be properly labeled, packaged, and sealed as described in the SOPs.

To document the quality of the data being collected, control checks for both laboratory and field data will be performed. A total of two (2) field duplicate samples will be analyzed to check for sampling and analytical reproducibility. Duplicate analysis can be performed for any field sample because each PSG sampler contains two sets of adsorbent cartridges. To select field sample duplicates, Roux staff will note them on the chain-of-custody (COC) form in accordance with Beacon procedures. Additionally, one trip blank will be included with the PSG samplers during shipment to detect potential contamination introduced during the shipping process.

All samples will be submitted under proper COC procedures to Beacon for analysis of the same target chemical list included in the 2023 Investigation, which included cVOCs and volatile hydrocarbons (i.e., benzene, toluene, ethylbenzene, xylenes, and naphthalene), by USEPA Method 8260C (Roux, 2023a).

4.4.2 Proposed Active Soil Gas Sampling

Roux also proposes to install and collect active soil gas samples from permanent soil vapor probes.

Installation of Active Soil Gas Sampling Points

Twenty-six co-located soil vapor probes will be constructed at 13 locations in accordance with the Department of Toxic Substances Control (DTSC) Advisory, Active Soil Gas Investigations guidance (Soil Gas Advisory; DTSC, 2015), and will consist of 13 probes installed at 5 ft bgs and 13 probes installed at 8 feet bgs within colocated 2.25-inch minimum diameter borings. As shown in Figure 4A through 4D, thirteen co-located soil vapor probes will be located near former PSG sample locations PSG-06, PSG-10, PSG-13, PSG-25, PSG-32, PSG-36, PSG-41, PSG-45, PSG-52, PSG-53, PSG-57, PSG-61, and PSG-62. Roux will retain a California licensed drilling contractor to perform all subsurface drilling activities. Active soil vapor sample collection from the probes will be conducted in accordance with Roux SOPs and the Soil Gas Advisory.

Each probe will consist of a new stainless steel filter probe tip with a ¼-inch push-to-connect fitting attached to ¼-inch diameter Teflon tubing. The probes will be installed using a small-diameter downhole guide rod to support the well tubing and probe in the borehole during the placement of annular materials and ensure that the probe tip is placed at the target sampling depth. After installation of the soil gas tubing and probe, the downhole guide rod will be removed from the borehole.

To construct each soil gas sampling point, a 12-inch sand pack consisting of #3 sand will be placed surrounding the probe tip, which will be set at 5 or 8 feet bgs. A 12-inch-thick layer of dry granular bentonite will be emplaced above the deep sand pack, which will be overlaid with bentonite grout or neat cement up to within approximately 6-inches of the ground surface. Each soil gas probe will be completed at the surface with a flush-with-grade traffic rated well box.

Although depth-to-water measurements appear to indicate that the deep soil vapor probes may intersect the water table, potentiometric groundwater elevations suggest that the water bearing zone is under pressure and will not be encountered at depths of approximately 8 feet bgs. However, if water is observed in the soil gas probes, then soil gas samples will not be collected.

Active Soil Gas Sample Collection and Chemical Analysis

After installation, each soil vapor probe will be allowed to equilibrate for at least two days prior to sampling per the Soil Gas Advisory. Protocols and procedures utilized by Roux will be in accordance with the Soil Gas Advisory and the SOPs included in Appendix E.

Prior to the collection of soil vapor samples, a "shut-in" test will be performed to check for leaks in the aboveground soil vapor sampling equipment. Following the shut-in test, approximately three purge volumes will be purged from the sampling tubing using a sample syringe, a calibrated air pump, or a purge SUMMA® canister before soil gas sample collection begins. Purge activities will be conducted at the same flow rate used for soil gas sample collection (approximately 150 milliliters per minute). During purging and soil vapor sample collection activities, a leak test will be performed using a shroud, which will enclose the soil gas probe vault, probe tubing, and the entire sampling manifold, and will allow for the utilization of helium as a leak check gas during purging and sampling. A minimum helium concentration of 20 percent will be maintained within the shroud during the purging and soil vapor sample collection period. Soil vapor samples will be collected from the new soil vapor probes after verifying that a leak check meets the acceptable quantitative air leakage conditions (i.e., <5% total atmospheric concentration air leak when sampling with a shroud). Data quality control procedures are presented in detail in Section 4.10. If soil vapor samples do not meet the acceptable air leak conditions, a new soil vapor probe will be installed using the methodology described in this section.

Soil vapor samples will be collected in one-liter evacuated SUMMA® canisters, labelled, and shipped under COC protocols to a California-certified laboratory in accordance with Roux SOPs and the Soil Gas Advisory for the following analysis:

- VOCs by USEPA Method TO-15;
- TPH-g via USEPA Method TO-3; and
- Fixed gases (helium, carbon monoxide, carbon dioxide, methane, nitrogen, and oxygen) by American Society for Testing and Materials (ASTM) standard D-1946.

Field sampling criteria, including location, time, sample container and manifold IDs, sampler(s), pressure readings, and helium shroud percentage, will be recorded on the soil vapor sampling logs. Soil gas sampling forms are included in Appendix F. A summary of the proposed soil gas sampling is shown in Table 1.

4.5 Additional Soil Sampling

In preparation for the anticipated redevelopment of the Site, Roux proposes to characterize near-surface soil by collecting soil samples on a 150-foot by 150-foot grid pattern throughout the Site. Proposed soil sampling locations provide coverage of the entire Site, including the areas of proposed disturbance related to the development (i.e., proposed utility corridors and stormwater bioswales). Soil characterization will include:

- Advancing a total of 35 soil borings to a depth of 5 feet bgs (total depths may vary based on co-located sample point; see Table 1 for more detail) in areas outside of the utility corridors. Non-utility corridor soil samples will be collected at five depth intervals: 0.5-1, 1-2, 2-3, 3-4, and 4-5 feet bgs;
- Advancing a total of 13 soil borings to a depth of 10 feet bgs (total depths may vary based on co-located sample point; see Table 1 for more detail) within the utility corridors. Soil samples within the utility corridors will be collected at eight depth intervals: 0.5-1, 1-2, 2-3, 3-4, 4-5, 7-8, and 9-10 feet bgs.

Table 1 summarizes the soil depth intervals that are proposed for analysis and the soil depths to be placed on hold pending initial analytical results. The initial batch of soil samples to be analyzed will be analyzed for the following:

- VOCs via USEPA Method 8260B (with preservation via USEPA Method 5035);
- Semi-volatile organic compounds (SVOCs) by USEPA Method 8270C;
- TPH-g, TPH-d, and TPH as motor oil (TPH-mo) via USEPA Method 8260B and/or 8015B;
- California Assessment Manual (CAM17) Metals via USEPA Method 6020; and,
- Polychlorinated biphenyls (PCBs) by USEPA Method 8082.

Soil samples from depth intervals not proposed for initial analysis will be held pending the results of the shallow soil samples. If necessary, extractions for analytes with short hold times may be run to extend the hold period. If impacts are suspected to extend below the deepest shallow sample interval analyzed, additional soil analysis will be conducted until the extent of impacts are identified or the deepest sample is found to be impacted.

In addition, soil characterization will also include (all depths are considered approximate; actual sample depths will be determined in the field based on observed lithology and observed first encountered groundwater) advancing 14 borings to first encountered groundwater and the collection of one soil sample from the groundwater interface. The soil samples collected from the groundwater interface will be submitted for the following laboratory analyses:

- VOCs via USEPA Method 8260B (with preservation via USEPA Method 5035); and
- TPH-g, TPH-d, and TPH-mo via USEPA Method 8260B and/or 8015.

Soil borings will be advanced to 5 feet bgs using a hand auger or direct-push technology (DPT). Soil will be captured in Macro-Core sleeves through the center of the DPT drill stem. The Macro-Core sleeves will be opened and soil will be logged by the Field Geologist, Engineer, or Scientist under the supervision of a California Licensed Professional Geologist using the Unified Soil Classification System (USCS). Soil lithology, field screening readings utilizing a photoionization detector (PID), and sampling depths will be recorded on boring logs. If stained/discolored soil is observed or an elevated PID response greater than 10 parts per million is measured while logging subsurface soils, additional soil samples will be collected.

To minimize volatilization during transport following sampling, soil samples for VOCs will be collected into EnCore-type, or equivalent, sample containers in accordance with USEPA Method 5035. All samples will be appropriately labelled, packaged, and placed on ice for submittal under COC protocols to a California-certified laboratory for environmental analyses.

SOPs for soil sampling are presented in Appendix E. Roux will document soil sample collection methods and activities using field forms as shown in Appendix F. A summary of the proposed soil sampling and analysis plan is shown in Table 1.

4.6 Grab Groundwater Sampling

Roux proposes to collect grab groundwater samples from a total of 14 locations across the Site targeting data gaps identified following the 2023 Investigation of soil vapor and the demolition of the historical structures in 2023. Twelve pits were identified following demolition activities at the Site in 2023. Roux proposes to advance eight groundwater borings downgradient of each pit or cluster of closely located pits. An initial

investigation of elevated detections of vinyl chloride in MW-12 will be conducted by the advancement of four groundwater borings (GW-1 through GW-4). Finally, two groundwater borings (GW-5 and GW-6) will be advanced in the vicinity of elevated detections of cVOCs. All proposed groundwater sampling locations are shown on Figures 4A through 4D and 5A and 5B.

A total of fourteen borings will be advanced to the first encountered water bearing zone for the collection of grab groundwater for purposes detailed above (Figures 4A through 5B; Table 1). Following shallow groundwater sample collection, the four borings (GW-1 through GW-4) investigating vinyl chloride surrounding MW-12 and the two borings investigating cVOC impacts observed in passive soil vapor (GW-5 and GW-6) will be advanced to the second observed groundwater bearing zone for the collection of grab groundwater in a co-located borehole to prevent cross contamination of the water bearing zones.

In preparation for sampling, ten feet of pre-pack screen will be emplaced into the borehole at a depth extending across the measured depth of the top of the groundwater table. Prior to sampling, a low flow pump will be utilized to purge at least one casing volume of water from the temporary well casing to limit suspended sediment in the sample. Once the purge has been completed, grab groundwater samples will be collected in laboratory-provided bottles using low-flow sampling methodology and appropriately labeled, packaged, and placed on ice for submittal under COC protocols to a California-certified laboratory for analyses. Once the grab groundwater sampling is complete, the temporary casing will be removed, and the sampling point will be backfilled with neat cement grout in accordance with ACPWA requirements and patched at the surface as necessary to match the surrounding Site conditions.

All grab groundwater samples will be submitted for the following laboratory analyses:

- VOCs via USEPA Method 8260B;
- TPH-g, TPH-d, and TPH-mo via USEPA Method 8260B and/or 8015; and
- CAM 17 Metals via USEPA Method 6020 (filtered [0.45 micron] and unfiltered).

A summary of the proposed grab groundwater sampling is shown in Table 1. SOPs for groundwater sampling are presented in Appendix E and groundwater sampling field forms are presented in Appendix F.

4.6 Quarterly Groundwater Monitoring Activities

Quarterly groundwater monitoring has been conducted at the Site since the fourth quarter of 2023. As part of the 2023 Investigation, Roux installed eight monitoring wells around the perimeter of the Site to monitor groundwater quality, groundwater flow direction, and hydraulic gradient at the Site. Based on the groundwater results of the 2023 Investigation and subsequent quarterly groundwater monitoring events during the fourth quarter of 2023 and first quarter of 2024, Roux will continue to monitor concentration trends for VOCs, TPHs, and metals to evaluate groundwater quality and potential for vapor intrusion at the Site. The existing monitoring wells (MW-10 through MW-17) will be sampled through the third quarter of 2025.

4.7 Waste Management

Investigation-derived waste (IDW) will be temporarily stored on-site in Department of Transportationapproved 55-gallon drums throughout the field portion of the Data Gap Investigation. IDW will be sampled and analyzed according to the requirements of the selected disposal facility. At a minimum, it is assumed that solid and liquid waste characterization samples will be submitted for the following laboratory analyses:

• VOCs via USEPA Method 8260B;

- CAM17 Metals via USEPA Method 6020; and
- TPH-g, TPH-d, and TPH-mo by USEPA Method 8260B and/or 8015.

Supplemental leachability analyses will be conducted as appropriate based on the initial sampling results to provide for a complete hazardous waste classification. Corresponding trigger levels for each compound based on the Total Threshold Limit Concentration (TTLC) for further analysis using Soluble Threshold Limit Concentration (STLC) and Toxic Characteristic Leaching Procedure (TCLP) are specified in Appendix G.

Following receipt of the analytical results, IDWs will be disposed upon the generator's selection of the disposal facility, obtaining a USEPA Identification Number (if needed), signing waste manifests, and determining waste characteristics and classification.

4.8 Field Quality Control

Field duplicate samples will be collected to check for sampling and analytical reproducibility. The general level of quality control (QC) effort will be one field duplicate collected for every ten (10) investigative samples. Duplicate samples will be collected, numbered, packaged, and sealed in the manner as the primary samples laid out in the sample collection procedures described above. Any duplicate sample will be submitted blind to the laboratory.

Each sample will be labelled with a unique sample number (based on sample location, media, and/or depth) that will facilitate tracking and cross-referencing of sample information. Field duplicate samples will also be numbered with a unique sample number to prevent analytical bias of field QC samples.

A COC record will be completed during sample collection and will accompany the samples to the laboratory. The field personnel collecting the samples will be responsible for the custody of the samples until the samples are relinquished to the laboratory. In accordance with typical COC protocols, sample transfer will require the individuals relinquishing and receiving the samples to sign, date, and note the time of sample transfer on the chain-of-custody record.

4.9 Surveying

A State-registered surveyor will measure the horizontal coordinates and vertical elevation of all sample locations, in accordance with the State of California requirements.

4.10 Data Quality Evaluation

In accordance with ACEHD requirements, Roux will perform all data quality collection and evaluation procedures detailed below.

4.10.1 Leak Check

Roux will perform a shut -in test and helium shroud test at each active soil vapor sampling location prior to sample collection:

4.10.1.1 Negative Pressure Shut-in Test

Roux will perform a negative pressure shut-in test conducted by assembling the sampling apparatus (sample canister and manifold) and then putting the sampling apparatus under negative pressure using a 3-way valve and a syringe. Once placed under negative pressure, the sampling manifold will be monitored for a minimum

6-min interval (equivalent to the anticipated duration of sampling) to determine if there is any loss of vacuum pressure, which would indicate the presence of a leak between the canister valve and the connection point to the sample probe. Where failures occur, Roux will document corrections that are implemented (i.e., tighten fittings, replace manifolds, replace canisters).

4.10.1.2 Helium Shroud Test

Roux will perform a helium shroud test throughout the duration of purging and sampling, verifying the following:

- The complete sample apparatus and surface completion of the vapor probe assembly is encapsulated in a plastic shroud.
- The atmosphere of the shroud is enriched to a minimum 20% constant helium atmosphere.
- In-line helium meters will be used to verify that there is less than 0.1% helium prior to proceeding with sampling (0.1% helium in the effluent pump would equate to a 0.5% helium leak).
- Analysis of samples at an analytical laboratory for helium as verification of sample integrity. Where laboratory analytical reports indicate a helium concentration greater than 0.75%, complete a leak check calculation to determine if the samples meet an acceptance criteria of less than 5% leak (e.g., detected helium concentration was 0.482%, which would equate to an approximately 2% leak).

4.10.2 Downhole Vacuum & Sample Duration

Roux will perform an analysis of sample bias and non-representative samples relative to:

- Downhole vacuum greater than 100 inches of water column (in-WC) [equivalent to 7.3 inches of mercury (in-Hg)], which can result in analytical sample bias due to either volatilization of liquid phase or sorbed mass (for compounds with low vapor pressure) or condensing of compounds within the sample canister.
- Flow rates below 100 milliliters per minute (ml/min) [e.g., sample durations greater than 12 minutes per 1-L canister] which can be indicative of flow restrictions and may indicate that there were impediments to flow within the vapor pore spaces, thus leading to vapor samples being non-representative of the average area. Note: At locations where duplicate samples are collected, the sample volume is doubled (two 1-L canisters).

4.10.3 Canister Pressure: Initial

Roux will perform an analysis of canister integrity during sampling including verification that initial canister pressure is less than absolute vacuum (at standard temperature [0°C], absolute vacuum is measured at - 29.92 in-Hg) to determine potential for bias in the sample result in the event that constituents of concern may be present within the sample canister prior to sample collection, or may dilute soil vapor results if a portion of the sample canister volume contains vapor without the specified constituents of concern. Calculation of the percent relative error introduced by null existing gas (e.g., existing gas that is absent constituents of concern) uses the following equation:

% Relative Error = $(P_A - P_I)/(P_A - P_F)$

Where P_A = absolute vacuum pressure, P_I = initial vacuum pressure within the canister at the start of sampling, and P_F = final vacuum pressure within the canister at the end of sampling. Assuming a final vacuum pressure 5-in-Hg and an absolute vacuum pressure of 30 in-Hg, the break point for 10% relative error is at 27.5 in-Hg.

4.10.4 Canister Pressure: Laboratory Receipt

Rou will confirm that sample integrity is maintained during transport to the analytical laboratory by comparison of absolute pressure in each canister recorded by the analytical laboratory at the time of sample receipt to the sample canister pressure at the end of sample collection and barometric pressure at the time of sample receipt.

4.10.5 Hold-Time

Roux will verify that all analytical samples are analyzed within the standard laboratory hold time applicable for USEPA Method TO-3, TO-15 and ASTM D1946.

4.10.6 Dilution Factors and Reporting Limits

Roux will review dilution factors in laboratory analytical reports for evidence of potential bias in reported results or elevated detection or reporting limits resulting from dilution during laboratory sample analysis.

4.10.7 Canister and Laboratory Certification

Rouw will verify that all sample canisters and sample manifolds used for the collection of analytical samples were individually certified as clean.

4.10.8 Surrogate & Laboratory Control Sample Recovery

Roux will verify that surrogate recovery was not out of the acceptable tolerance range for any samples and no Lab Control Sample % recovery were outside acceptance criteria.

Surrogate recovery and Lab Control Sample recovery represents extraction efficiency for groups of analytes within a sample. The standard tolerance is $100\% \pm 30\%$. A high bias should be assumed when surrogate recovery is greater than 130% and a low bias should be assumed when surrogate recovery is less than 70%.

4.10.9 Method Blanks

Roux will perform an analysis of analytes that are present in the method blank that can indicate potential presence of false positive results. This can be particularly relevant when reporting between the laboratory reporting limit and the practical quantification limit (e.g., J flag estimates).

Roux will also perform an evaluation if the reported detections are within 10% of the applicable risk-based screening level to support that the detections of non-COC analytes in method blanks does not represent a data quality issue and no further actions are necessary.

4.10.10 Duplicate/Replicate Samples

Roux will perform an analysis of duplicate sample results to evaluate reproducibility of analytical data. Calculation of a standard acceptance criteria of 30% relative percent difference (RPD) is as follows:

$$RPD = ABS VAL (A-B)/(A+B/2)$$

Where A and B are the respective concentrations reported in duplicate samples.

Roux will compare RPDs to a standard acceptance criterion of 30% relative percent difference. Samples reported at concentrations that were non-detect at the laboratory reporting limit (e.g., j-flag values) will not be evaluated due to these values being estimated values outside the bounds of calibration data.

4.10.11 Field Note Validation

Roux will review field notes collected during each sampling event and verify accuracy of field notes using photographs with time stamps, photo-logs, COCs, and the laboratory analytical report to identify any potential data collection or transcription errors. Where more than two reference sources are available (e.g., time stamp on photos, time recorded in field notes, time recorded on chain of custody, and time recorded on sample label), resolve discrepancies based on the prevailing weight of the sources.

5. Reporting

After the Data Gap Investigation is complete, a Data Gap Investigation Report (Report) will be prepared and submitted to the ACEHD and uploaded to GeoTracker with all of the associated data deliverables within 60 days of the receipt of analytical results as shown in the most recent project schedule (Roux, 2024). The report will include a summary of the field activities, field observations, boring logs, data quality review, deviations from the workplan (if any), laboratory analytical results, a comparison of the analytical results to applicable regulatory standards, soil gas isoconcentration map (heat map), assessment of the findings, conclusions, and recommendations for next steps. A data validation review of the analytical results will be performed in accordance with USEPA guidance (USEPA, 2020a; USEPA, 2020b), which will include reviewing all laboratory receiving information, sample conditions, COC forms, reporting units and required sensitivity, holding times, and sample-related QC such as method blanks, laboratory control samples, and duplicate and spike results. During this process, Roux will determine which of the advisory data qualifiers will be used to alert end users as to uncertainties associated with the data.

Based on the objectives of this investigation, analytical data will be screened against the following criteria for each specific sampling media:

- For waste profiling of soil and groundwater, sample results will be screened against California and Federal hazardous waste screening criteria.
- Soil sample results will be screened against the 2019 RWQCB ESLs for direct contact for Commercial/Industrial and worker exposure scenarios.
- Passive and active soil gas samples will be screened against the 2019 RWQCB Soil Gas ESLs for potential vapor intrusion risk for Commercial/Industrial land use.

6. Scheduling

Upon approval of this Revised Work Plan, Roux will coordinate with Prologis to prepare a fact sheet and perform the necessary public notifications regarding the investigation field work. In conjunction with the public notification requirements, Roux will perform pre-field activities and mobilize to the field within 30 days assuming there are no delays associated with access, equipment availability, or weather. As discussed in the most recent meeting between Roux, Prologis, ACEHD, and Craig Communications (May 9, 2024), it is anticipated that the Data Gap Investigation will commence on May 20, 2024, and the Report will be submitted to the ACEHD approximately 60 days following receipt of final laboratory analytical results. The anticipated delivery of the DGI Summary Report is September 2024.

7. References

- AB&I, 2008a. Fuel Leak Case No. RO0000092 and Geotracker Global ID T0600100065 Site Investigation Report, AB&I Foundry, 7825 San Leandro Street, Oakland, California. February 15.
- AB&I, 2008b. Fuel Leak Case No. RO0000092 and Geotracker Global ID T0600100065 Quarterly Groundwater Monitoring and Sampling Report First Quarter 2008, AB&I Foundry, 7825 San Leandro Street, Oakland, California. April 24.
- AB&I, 2008c. Fuel Leak Case No. RO0000092 and Geotracker Global ID T0600100065 Additional Site Investigation Report, AB&I Foundry, 7825 San Leandro Street, Oakland, California. September 25.
- AB&I, 2009a. Fuel Leak Case No. RO0000092 and Geotracker Global ID T0600100065 Quarterly Groundwater Monitoring and Sampling Report Third and Fourth Quarter 2008, AB&I Foundry, 7825 San Leandro Street, Oakland, California. January 13.
- AB&I, 2009b. Fuel Leak Case No. RO0000092 and Geotracker Global ID T0600100065 Supplemental Soil Vapor Investigation Report, AB&I Foundry, 7825 San Leandro Street, Oakland, California. February 15.
- AB&I, 2009c. Fuel Leak Case No. RO0000092 and Geotracker Global ID T0600100065 Enhanced Aerobic Biodegradation Pilot Study Report, AB&I Foundry, 7825 San Leandro Street, Oakland, California. October 7.
- AB&I, 2009d. Fuel Leak Case No. RO0000092 and Geotracker Global ID T0600100065 Enhanced Anaerobic Biodegradation Pilot Study Report, AB&I Foundry, 7825 San Leandro Street, Oakland, California. October 7.
- AB&I, 2010a. Fuel Leak Case No. RO0000092 and Geotracker Global ID T0600100065 Semi-Annual Monitoring Report and Request for Site Closure, AB&I Foundry, 7825 San Leandro Street, Oakland, California. September 7.
- AB&I, 2010b. Fuel Leak Case No. RO0000092 and Geotracker Global ID T0600100065 Semi-Annual Monitoring and Pilot Study Progress Report, AB&I Foundry, 7825 San Leandro Street, Oakland, California. January 29.
- AB&I, 2011a. Fuel Leak Case No. RO0000092 and Geotracker Global ID T0600100065 Revised Site Management Plan, AB&I Foundry, 7825 San Leandro Street, Oakland, California. July 19.
- AB&I, 2011b. Fuel Leak Case No. RO0000092 and Geotracker Global ID T0600100065 Well Decommissioning Report, AB&I Foundry, 7825 San Leandro Street, Oakland, California. November 22.
- ACEHD, 2009. Subject: Letter regarding, "Fuel Leak Case No. RO0000092 and Geotracker Global ID T0600100065 American Brass & Iron Foundry, 7825 San Leandro Street, Oakland, CA 94621," May 20.
- ACEHD, 2010. Subject: Letter regarding, "Fuel Leak Case No. RO0000092 and Geotracker Global ID T0600100065 American Brass & Iron Foundry, 7825 San Leandro Street, Oakland, CA 94621," March 2.
- ACEHD, 2011. Subject: Letter regarding, "Fuel Leak Case No. RO0000092 and Geotracker Global ID T0600100065 American Brass & Iron Foundry, 7825 San Leandro Street, Oakland, CA 94621," April 28

BSK, 2007. Preliminary Groundwater Investigation Report AB&I Foundry. June 11.

DTSC, 2015. Advisory - Active Soil Gas Investigations. July.

- Duvergé, Dylan Jacques, 2011. Establishing Background Arsenic in Soil of the Urbanized San Francisco Bay Region. December 5.
- H&A, 2022a. ASTM Phase I Environmental Site Assessment, AB&I Foundry, 7741, 7825, and 7929 San Leandro Street, Oakland, California. April 20.
- H&A, 2022b. Limited Phase II Environmental Investigation Results, 7825 San Leandro Street, Oakland, California. May 9.
- Helley, E.J., K.R. Lajoie, W.E. Spangle, and M.L. Blair, 1979. Flatland Deposits of the San Francisco Bay Region, California, Their Geology and Engineering Properties, and Their Importance to Comprehensive Planning. U.S. Geological Survey Professional Paper 943. Washington D.C.
- Muir, K.S., 1993. Geologic Framework of the East Bay Plain Groundwater Basin, Alameda County, California.
- Roux, 2023a. Passive Soil Gas and Groundwater Investigation Report, 7825 San Leandro Street, Oakland, California, Alameda County LOP Case No. RO0003535. October 4.
- Roux, 2023b. Conceptual Supplemental Subsurface Investigation Memorandum, 7825 San Leandro Street, Oakland, California, Alameda County LOP Case No. RO0003535. October 16.
- Roux, 2024. AB&I Redevelopment Project Schedule, January 15.
- RWQCB, 2019. Environmental Screening Levels (ESLs): 2019 Update (Revision 2). June.
- USEPA, 2020a. National Functional Guidelines for Inorganic Superfund Methods Data Review. Office of Superfund Remediation and Technology Innovation (OSRTI). November.
- USEPA, 2020b. National Functional Guidelines for Organic Superfund Methods Data Review. Office of Superfund Remediation and Technology Innovation (OSRTI). November.

Revised Site Conceptual Model & Data Gap Investigation Work Plan 7825 San Leandro Street, Oakland, California

TABLE

1. Proposed Sampling Analysis Plan (SAP)

									Analy	/ses ⁽²⁾						
					Soil				Water				Soil	Gas		
Location / Sample ID	Sample Grid	Sample Depths ⁽¹⁾	VOCs	SVOCs	TPH g/d/mo	CAM 17 Metals	PCBs	VOCs	TPH g/d/mo	CAM 17 Metals	VOCs	TPH C4 - C9	ТРН С10 - С15	TO-3	TO-15	
Proposed Soil a	nd Grab Gro	undwater Sampling Lo	cations													
		0.5 - 1.0		•	0	•	٠									Γ
		1.0 - 2.0	•	•	0	•	0									
G-A1-1	A1	2.0 - 3.0	•	•	•	•	0									
		3.0 - 4.0	0	0	0	0	0									
		4.0 - 5.0	•	0	•	0	0									
		0.5 - 1.0		•	0	٠	٠									Γ
		1.0 - 2.0	•	•	0	•	0									Γ
G/BS-A2-1	A2	2.0 - 3.0	•	•	•	•	0									
		3.0 - 4.0	0	0	0	0	0									
		4.0 - 5.0	•	0	•	0	0									
		0.5 - 1.0		•	0	•	٠									T
		1.0 - 2.0	•	•	0	•	0									
		2.0 - 3.0	0	•	•	•	0									
UC-A2-1	A2	3.0 - 4.0	0	0	0	0	0									Î
		4.0 - 5.0	•	0	•	0	0									
		7.0 - 8.0	0	0	0	0	0									
		9.0 - 10.0	•	0	0	0	0									Γ
		0.5 - 1.0		•	0	•	٠								<u> </u>	Ī
		1.0 - 2.0	•	•	0	•	0									T
G/BS-A3-1	A3	2.0 - 3.0	•	•	•	•	0									T
		3.0 - 4.0	0	0	0	0	0									T
		4.0 - 5.0	•	0	•	0	0									Î
		0.5 - 1.0		•	0	•	•								Ì	Î
		1.0 - 2.0	•	•	0	•	•									Ť
		2.0 - 3.0	0	•	•	•	0									Ť
UC-A3-1	A3	3.0 - 4.0	0	0	0	0	0								1	t
		4.0 - 5.0	•	0	•	0	0									ſ
		7.0 - 8.0	0	0	0	0	0								1	ſ
		9.0 - 10.0	•	0	0	0	0									T

Fixed Gases	Purpose/Rationale
	Establish baseline shallow soil conditions within grid A1.
	Establish baseline shallow soil conditions within grid A2 and the extent of the proposed bio swale and evaluate magnitude and extent of previous investigation.
	Establish baseline shallow soil conditions in the proposed utility corridor.
	Establish baseline shallow soil conditions within grid A3 and the extent of the proposed bio swale.
	Establish baseline shallow soil conditions in the proposed utility corridor.

									Analy	/ses ⁽²⁾						
					Soil				Water				Soil	Gas		
Location / Sample ID	Sample Grid	Sample Depths ⁽¹⁾	VOCs	SVOCs	TPH g/d/mo	CAM 17 Metals	PCBs	VOCs	TPH g/d/mo	CAM 17 Metals	VOCs	ТРН C4 - C9	TPH C10 - C15	TO-3	TO-15	
		0.5 - 1.0		•	0	•	•									ſ
		1.0 - 2.0	•	•	0	•	0									ſ
BS-B1-1	B1	2.0 - 3.0	•	•	•	•	0									
		3.0 - 4.0	0	0	0	0	0									
		4.0 - 5.0	•	0	•	0	0									
		0.5 - 1.0		•	0	•	•									Γ
		1.0 - 2.0	٠	•	0	•	0									ſ
		2.0 - 3.0	0	•	•	•	0									ſ
G/UC-B1-1	B1	3.0 - 4.0	0	0	0	0	0									Γ
		4.0 - 5.0	•	0	•	0	0									ſ
		7.0 - 8.0	0	0	0	0	0									
		9.0 - 10.0	•	0	0	0	0									
		0.5 - 1.0		•	0	•	•									ſ
G-B2-1 B2		1.0 - 2.0	٠	•	0	•	•									ſ
	B2	2.0 - 3.0	٠	•	•	•	0									ſ
		3.0 - 4.0	0	0	0	0	0									Γ
		4.0 - 5.0	٠	0	•	0	0									ſ
		0.5 - 1.0		•	0	•	•									Γ
		1.0 - 2.0	•	•	0	•	•									Γ
G-B3-1	B3	2.0 - 3.0	•	•	•	•	0									Γ
		3.0 - 4.0	0	0	0	0	0									Γ
		4.0 - 5.0	٠	0	•	0	0									
		GW interface	٠		•											
GW-5	B3	1st Encountered GW						•	•	•						Γ
		2nd Encountered GW						•	•	•						
		0.5 - 1.0		•	0	•	•									Γ
		1.0 - 2.0	•	•	0	•	•									F
		2.0 - 3.0	0	•	•	•	0									Γ
G/UC-B4-1	B4	3.0 - 4.0	0	0	0	0	0									Γ
		4.0 - 5.0	•	0	•	0	0									ľ
		7.0 - 8.0	0	0	0	0	0					1				Γ
		9.0 - 10.0	•	0	0	0	0									Γ

Fixed Gases	Purpose/Rationale
	Establish baseline shallow soil conditions within the extent of the proposed bio swale.
	Establish baseline shallow soil conditions within grid B1 and the proposed utility corridor.
	Establish baseline shallow soil conditions within grid B2.
	Establish baseline shallow soil conditions within grid B3.
	Assess TCE impacts in groundwater proximate to PSG-41.
	Establish baseline shallow soil conditions within grid B4 and the proposed utility corridor.

									Analy	/ses ⁽²⁾						
					Soil				Water				Soil	Gas		
Location / Sample ID	Sample Grid	Sample Depths ⁽¹⁾	VOCs	SVOCs	TPH g/d/mo	CAM 17 Metals	PCBs	VOCs	TPH g/d/mo	CAM 17 Metals	VOCs	ТРН C4 - C9	TPH C10 - C15	TO-3	TO-15	
		0.5 - 1.0		•	0	•	•									T
		1.0 - 2.0	•	•	0	•	•									
		2.0 - 3.0	0	•	•	•	0									
UC-B4-2	B4	3.0 - 4.0	0	0	0	0	0									
		4.0 - 5.0	•	0	•	0	0									
		7.0 - 8.0	0	0	0	0	0									
		9.0 - 10.0	•	0	0	0	0									
		0.5 - 1.0		•	0	•	•									T
		1.0 - 2.0	•	•	0	•	0									T
BS-C1-1	C1	2.0 - 3.0	•	•	•	•	0									
		3.0 - 4.0	0	0	0	0	0									
		4.0 - 5.0	•	0	•	0	0									
		0.5 - 1.0		•	0	•	•									Τ
		1.0 - 2.0	•	•	0	•	0									
		2.0 - 3.0	0	•	•	•	0									
G/UC-C1-1	C1	3.0 - 4.0	0	0	0	0	0									
		4.0 - 5.0	•	0	•	0	0									
		7.0 - 8.0	0	0	0	0	0									
		9.0 - 10.0	•	0	0	0	0									
		0.5 - 1.0		•	0	•	•									T
		1.0 - 2.0	•	•	0	•	0									T
G-C2-1	C2	2.0 - 3.0	•	•	•	•	0									
		3.0 - 4.0	0	0	0	0	0									
		4.0 - 5.0	•	0	•	0	0									
		0.5 - 1.0		•	0	•	•									T
		1.0 - 2.0	•	•	0	•	0									T
G-C3-1	C3	2.0 - 3.0	•	•	•	•	0									T
		3.0 - 4.0	0	0	0	0	0									Ī
		4.0 - 5.0	•	0	•	0	0									T

Fixed Gases	Purpose/Rationale
	Establish baseline shallow soil conditions in the proposed utility corridor.
	Establish baseline shallow soil conditions within the extent of the proposed bio swale.
	Establish baseline shallow soil conditions within grid C1 and the proposed utility corridor.
	Establish baseline shallow soil conditions within grid C2.
	Establish baseline shallow soil conditions within grid C3.

									Analy	/ses ⁽²⁾						
					Soil				Water				Soil	Gas		
Location / Sample ID	Sample Grid	Sample Depths ⁽¹⁾	VOCs	SVOCs	TPH g/d/mo	CAM 17 Metals	PCBs	VOCs	TPH g/d/mo	CAM 17 Metals	VOCs	ТРН C4 - C9	TPH C10 - C15	TO-3	TO-15	
		0.5 - 1.0		•	0	٠	٠									ſ
		1.0 - 2.0	•	•	0	•	0									Γ
		2.0 - 3.0	0	•	•	•	0									
		3.0 - 4.0	0	0	0	0	0									
G/UC-C4-1/P-10	C4	4.0 - 5.0	•	0	•	0	0									
		7.0 - 8.0	0	0	0	0	0									
		9.0 - 10.0	•	0	0	0	0									
		GW interface	•		•											
		1st Encountered GW						•	•	•						
		0.5 - 1.0		•	0	•	٠									Γ
		1.0 - 2.0	•	•	0	•	0									Γ
BS-D1-1	D1	2.0 - 3.0	•	•	•	•	0									
		3.0 - 4.0	0	0	0	0	0									Γ
		4.0 - 5.0	•	0	•	0	0									
		0.5 - 1.0		•	0	•	٠									Г
		1.0 - 2.0	•	•	0	•	0									Γ
G-D1-1	D1	2.0 - 3.0	•	•	•	•	0									
		3.0 - 4.0	0	0	0	0	0									Γ
		4.0 - 5.0	•	0	•	0	0									
		0.5 - 1.0		•	0	•	•									
	ľ	1.0 - 2.0	•	•	0	•	0									
G-D2-1	D2	2.0 - 3.0	•	•	•	•	0									Γ
	ľ	3.0 - 4.0	0	0	0	0	0									Γ
		4.0 - 5.0	•	0	•	0	0									
		0.5 - 1.0		•	0	•	٠									
	-	1.0 - 2.0	•	•	0	•	0									
G-D3-1	D3	2.0 - 3.0	•	•	•	•	0									
		3.0 - 4.0	0	0	0	0	0									Γ
		4.0 - 5.0	•	0	•	0	0									
		0.5 - 1.0		•	0	•	•					-				Γ
	ŀ	1.0 - 2.0	•	•	0	•	0									F
G/BS-D4-1	D4	2.0 - 3.0	•	•	•	•	0					1				F
	h h	3.0 - 4.0	0	0	0	0	0					1				F
	h h	4.0 - 5.0	•	0	•	0	0					1				F

	Fixed Gases	Purpose/Rationale
		Establish baseline shallow soil conditions within grid C4 and the utility corridor. Following the collection of the utility corridor shallow soil samples, an additional soil sample will be collected at the observed groundwater interface. Grab groundwater will be collected to assess groundwater conditions immediately downgradient of PIT-10.
-		Establish baseline shallow soil conditions within the extent of the proposed bio swale.
		Establish baseline shallow soil conditions within grid D1.
		Establish baseline shallow soil conditions within grid D2.
		Establish baseline shallow soil conditions within grid D3.
		Establish baseline shallow soil conditions within grid D4 and the extent of the proposed bio swale.

									Analy	/ses ⁽²⁾						
					Soil				Water				Soil	Gas		
Location / Sample ID	Sample Grid	Sample Depths ⁽¹⁾	VOCs	SVOCs	TPH g/d/mo	CAM 17 Metals	PCBs	VOCs	TPH g/d/mo	CAM 17 Metals	VOCs	ТРН C4 - C9	TPH C10 - C15	TO-3	TO-15	
		0.5 - 1.0		•	0	•	•									Ī
		1.0 - 2.0	•	•	0	•	0									
		2.0 - 3.0	•	•	•	•	0									
BS-E1-1/GW-1	E1	3.0 - 4.0	0	0	0	0	0									
	L 1	4.0 - 5.0	•	0	•	0	0									
		Groundwater interface	•		•											1
		1st Encountered GW						•	•	•						1
		2nd Encountered GW						•	•	•						
		0.5 - 1.0		•	0	•	•									
		1.0 - 2.0	•	•	0	•	0									
		2.0 - 3.0	•	•	•	•	0									T
G-E1-1/GW-2	E1	3.0 - 4.0	0	0	0	0	0									Γ
G-E I- 1/GW-2	EI	4.0 - 5.0	•	0	•	0	0									T
		GW interface	•		•											T
		1st Encountered GW						•	•	•						T
		2nd Encountered GW						•	•	•						T
		GW interface	•		•											Ī
GW-3	E1	1st Encountered GW						•	•	•						Î
		2nd Encountered GW						•	•	•						Î
		0.5 - 1.0		•	0	•	•									Ī
		1.0 - 2.0	•	•	0	•	0									
G-E2-1	E2	2.0 - 3.0	•	•	•	•	0									
		3.0 - 4.0	0	0	0	0	0									
		4.0 - 5.0	٠	0	•	0	0									
		0.5 - 1.0		•	0	•	•									
		1.0 - 2.0	•	•	0	•	•									
G-E3-1	E3	2.0 - 3.0	•	•	•	•	0									
		3.0 - 4.0	0	0	0	0	0									
		4.0 - 5.0	•	0	•	0	0									
		0.5 - 1.0		•	0	•	•									
		1.0 - 2.0	•	•	0	•	•									l
G/BS-E4-1	E4	2.0 - 3.0	•	•	•	•	0									ļ
		3.0 - 4.0	0	0	0	0	0									ļ
		4.0 - 5.0	•	0	•	0	0									Ţ
P-11	E4	GW interface	•		•											Ţ
	L T	1st Encountered GW						•	•	•						L

Fixed Gases	Purpose/Rationale
	Establish baseline shallow soil conditions within the extent of the proposed bio swale and at the groundwater interface. Co-located boring with GW-1. Following the collection of theproposed bio swale soil samples, an additional soil sample will be collected at the observed groundwater interface. Grab groundwater will be collected at two depth intervals to assess vinyl chloride impacts in groundwater proximate to MW-12.
	Establish baseline shallow soil conditions and evaluate magnitude and extent of previous investigation. Co-located boring with GW-2 . Following the collection of theproposed bio swale soil samples, an additional soil sample will be collected at the observed groundwater interface. Grab groundwater will be collected at two depth intervals to assess vinyl chloride impacts in groundwater proximate to MW-12.
	Further assess vinyl chloride impacts in groundwater proximate to MW-12.
	Establish baseline shallow soil conditions within grid E2.
	Establish baseline shallow soil conditions within grid E3.
	Establish baseline shallow soil conditions within grid E4 and the extent of the proposed bio swale.
	Assess groundwater conditions immediately downgradient of PIT-11.

									Analy	/ses ⁽²⁾						
					Soil				Water				Soil	Gas		
Location / Sample ID	Sample Grid	Sample Depths ⁽¹⁾	VOCs	SVOCs	TPH g/d/mo	CAM 17 Metals	PCBs	VOCs	TPH g/d/mo	CAM 17 Metals	VOCs	ТРН C4 - C9	TPH C10 - C15	TO-3	TO-15	
		0.5 - 1.0		•	0	•	•									
		1.0 - 2.0	•	•	0	•	•									
BS-F1-1	F1	2.0 - 3.0	•	•	•	•	0									
		3.0 - 4.0	0	0	0	0	0									
		4.0 - 5.0	•	0	•	0	0									L
		0.5 - 1.0		•	0	•	•									
		1.0 - 2.0	•	•	0	•	•									
G-F1-1	F1	2.0 - 3.0	•	•	•	•	0									
		3.0 - 4.0	0	0	0	0	0									
		4.0 - 5.0	•	0	•	0	0									
		GW interface	•		•											
GW-4	F1	1st Encountered GW						•	•	•						
		2nd Encountered GW						•	•	•						
		0.5 - 1.0		•	0	•	•									
		1.0 - 2.0	•	•	0	•	•									
G-F2-1	F2	2.0 - 3.0	•	•	•	•	0									
		3.0 - 4.0	0	0	0	0	0									
		4.0 - 5.0	•	0	•	0	0									
P-02	F2	GW interface	•		•											Γ
F-02	12	1st Encountered GW						•	•	•						
		0.5 - 1.0		•	0	•	•									Γ
		1.0 - 2.0	•	•	0	•	•									
		2.0 - 3.0	•	•	•	•	0									
G-F3-1/P-03	F3	3.0 - 4.0	0	0	0	0	0									
		4.0 - 5.0	•	0	•	0	0									
		GW interface	•		•											
		1st Encountered GW						•	•	•						
		0.5 - 1.0		•	0	•	•									
		1.0 - 2.0	•	•	0	•	0									
G/BS-F4-1	F4	2.0 - 3.0	•	•	•	•	0									ſ
		3.0 - 4.0	0	0	0	0	0									ſ
		4.0 - 5.0	•	0	•	0	0									
		0.5 - 1.0		•	0	•	•									Γ
BS-G1-1 G1		1.0 - 2.0	•	•	0	•	•									Γ
	G1	2.0 - 3.0	•	•	•	•	0									
		3.0 - 4.0	0	0	0	0	0									Γ
		4.0 - 5.0	٠	0	•	0	0									

Fixed Gases	Purpose/Rationale
	Establish baseline shallow soil conditions within the extent of the proposed bio swale.
	Establish baseline shallow soil conditions within grid F1.
	Further assess vinyl chloride impacts in groundwater proximate to MW-12.
	Establish baseline shallow soil conditions within grid F2.
	Assess groundwater conditions immediately downgradient of PIT-02.
	Establish baseline shallow soil conditions within grid F3. Following the collection of the baseline shallow soil samples, an additional soil sample will be collected at the observed groundwater interface. Grab groundwater will be collected to assess groundwater conditions immediately downgradient of PIT-3.
	Establish baseline shallow soil conditions within grid F4 and the extent of the proposed bio swale.
	Establish baseline shallow soil conditions within the extent of the proposed bio swale.

									Analy	/ses ⁽²⁾												
					Soil				Water				Soil	Gas		5						
Location / Sample ID	Sample Grid	Sample Depths ⁽¹⁾	VOCs	SVOCs	TPH g/d/mo	CAM 17 Metals	PCBs	VOCs	TPH g/d/mo	CAM 17 Metals	VOCs	ТРН C4 - C9	TPH C10 - C15	TO-3	TO-15							
		0.5 - 1.0		•	0	•	•									ſ						
		1.0 - 2.0	•	•	0	•	•															
G-G1-1	G1	2.0 - 3.0	•	•	•	•	0									L						
		3.0 - 4.0	0	0	0	0	0									L						
		4.0 - 5.0	•	0	•	0	0									Ĺ						
		0.5 - 1.0		•	0	•	•															
		1.0 - 2.0	•	•	0	•	•															
G-G2-1	G2	2.0 - 3.0	•	•	•	•	0															
		3.0 - 4.0	0	0	0	0	0															
		4.0 - 5.0	•	0	•	0	0															
		0.5 - 1.0		•	0	•	•															
		1.0 - 2.0	•	•	0	•	•															
G-G3-1	G3	2.0 - 3.0	•	•	•	•	0															
		3.0 - 4.0	0	0	0	0	0									L						
		4.0 - 5.0	•	0	•	0	0									ĺ						
		0.5 - 1.0		•	0	•	•															
		1.0 - 2.0	•	•	0	•	0															
		2.0 - 3.0	•	•	•	•	0															
G-G4-1/P-12	G4	3.0 - 4.0	0	0	0	0	0															
		4.0 - 5.0	•	0	•	0	0															
		GW interface	•		•																	
		1st Encountered GW						•	٠	•												
		0.5 - 1.0		•	0	•	•															
		1.0 - 2.0	•	•	0	•	•															
G/BS-H1-1	H1	2.0 - 3.0	•	•	•	•	0															
		3.0 - 4.0	0	0	0	0	0															
		4.0 - 5.0	•	0	•	0	0															
		0.5 - 1.0		•	0	•	•															
		1.0 - 2.0	•	•	0	•	0															
		2.0 - 3.0	0	•	•	•	0									ſ						
UC-H1-1	H1	3.0 - 4.0	0	0	0	0	0															
		4.0 - 5.0	•	0	•	0	0									ſ						
		7.0 - 8.0	0	0	0	0	0									ſ						
		9.0 - 10.0	•	0	0	0	0									ſ						
D 01	H1	GW interface	•		•											ſ						
P-01		1st Encountered GW						•	•	•						ſ						

Fixed Gases	Purpose/Rationale
	Establish baseline shallow soil conditions within grid G1.
	Establish baseline shallow soil conditions within grid G2.
	Establish baseline shallow soil conditions within grid G3.
	Establish baseline shallow soil conditions within grid G4. Following the collection of the utility corridor shallow soil samples, an additional soil sample will be collected at the observed groundwater interface.Grab groundwater will be collected to assess groundwater conditions immediately downgradient of PIT-12.
	Establish baseline shallow soil conditions within grid H1 and the proposed bio swalen.
	Establish baseline shallow soil conditions in the proposed utility corridor.
	Assess groundwater conditions immediately downgradient of PIT-01.

									Analy	/ses ⁽²⁾						
			Analyses ⁽²⁾ Soil Water Soil											Gas		
Location / Sample ID	Sample Grid	Sample Depths ⁽¹⁾	VOCs	SVOCs	TPH g/d/mo	CAM 17 Metals	PCBs	VOCs	TPH g/d/mo	CAM 17 Metals	VOCs	ТРН C4 - C9	TPH C10 - C15	TO-3	TO-15	
		0.5 - 1.0		•	0	•	•								J	1
		1.0 - 2.0	•	•	0	•	0									
G-H2-1	H2	2.0 - 3.0	•	•	•	•	0									
		3.0 - 4.0	0	0	0	0	0									
		4.0 - 5.0	•	0	•	0	0									
		GW interface	•		•											
GW-6	H2	1st Encountered GW						•	•	•						
		2nd Encountered GW						•	•	•						
		0.5 - 1.0		•	0	•	•									T
		1.0 - 2.0	•	•	0	•	•									Ī
G-H3-1	H3	2.0 - 3.0	•	•	•	•	0									Ī
		3.0 - 4.0	0	0	0	0	0									
P-06		4.0 - 5.0	•	0	•	0	0									
	H3	GW interface	•		•											Ī
F-00	пэ	1st Encountered GW						•	•	•						Ī
	H4	0.5 - 1.0		•	0	•	•									Ī
		1.0 - 2.0	•	•	0	•	0									Ī
		2.0 - 3.0	0	•	•	•	0									Ī
G/UC-H4-1		3.0 - 4.0	0	0	0	0	0									
		4.0 - 5.0	•	0	•	0	0									
		7.0 - 8.0	0	0	0	0	0									
		9.0 - 10.0	•	0	0	0	0									
P-08	H4	GW interface	•		•											Ī
F-00	⊓4	1st Encountered GW						٠	•	٠						T
		0.5 - 1.0		•	0	•	•									Ī
		1.0 - 2.0	•	•	0	•	0									Ī
BS-I1-1	I1	2.0 - 3.0	•	•	•	•	0									Ī
		3.0 - 4.0	0	0	0	0	0									Ī
		4.0 - 5.0	•	0	•	0	0									Ī
		0.5 - 1.0		•	0	•	•									Î
		1.0 - 2.0	•	•	0	•	0		l						1	1
		2.0 - 3.0	0	•	•	•	0								1	Î
G/UC-I1-1	11	3.0 - 4.0	0	0	0	0	0								1	Î
		4.0 - 5.0	•	0	•	0	0								1	Î
		7.0 - 8.0	0	0	0	0	0									Ţ
		9.0 - 10.0	•	0	0	0	0									T

Fixed Gases	Purpose/Rationale
	Establish baseline shallow soil conditions within grid H2.
	Assess benzene, PCE, and TCE impacts in groundwater proximate to PSG-25. See above for soil sampling depths and analyses.
	Establish baseline shallow soil conditions within grid H3.
	Assess groundwater conditions immediately downgradient of PIT-04, -05, and -06.
	Establish baseline shallow soil conditions within grid H4 and the proposed utility corridor.
	Assess groundwater conditions immediately downgradient of PIT-08 and -09.
	Establish baseline shallow soil conditions within the extent of the proposed bio swale.
	Establish baseline shallow soil conditions within grid I1 and the extent of the proposed utility corridor.

									Analy	/ses ⁽²⁾						
			Analyses ⁽²⁾ Soil Water Thus out the test of the test of test													
Location / Sample ID	Sample Grid	Sample Depths ⁽¹⁾	VOCs	SVOCs	TPH g/d/mo	CAM 17 Metals	PCBs	VOCs	TPH g/d/mo	CAM 17 Metals	VOCs	TPH C4 - C9	TPH C10 - C15	TO-3	TO-15	
		0.5 - 1.0		•	0	•	•									Ī
		1.0 - 2.0	•	•	0	•	0									
BS-I2-1	12	2.0 - 3.0	•	•	•	•	0									I
		3.0 - 4.0	0	0	0	0	0									
		4.0 - 5.0	•	0	•	0	0									
		0.5 - 1.0		•	0	•	•									T
		1.0 - 2.0	•	•	0	•	0									Î
		2.0 - 3.0	0	•	•	•	0									Ī
G/UC-I2-1	12	3.0 - 4.0	0	0	0	0	0									
		4.0 - 5.0	•	0	•	0	0									Ī
		7.0 - 8.0	0	0	0	0	0									Ŧ
		9.0 - 10.0	•	0	0	0	0									
		0.5 - 1.0		•	0	•	•									Ī
		1.0 - 2.0	•	•	0	•	0									╇
BS-I3-1	13	2.0 - 3.0	•	•	•	•	0									Ī
		3.0 - 4.0	0	0	0	0	0									Ī
		4.0 - 5.0	•	0	•	0	0									
		0.5 - 1.0		•	0	•	•									Ī
		1.0 - 2.0	•	•	0	•	0									Ī
		2.0 - 3.0	0	•	•	•	0									Ī
G/UC-I3-1	13	3.0 - 4.0	0	0	0	0	0									I
		4.0 - 5.0	•	0	•	0	0									Ī
		7.0 - 8.0	0	0	0	0	0									Ī
		9.0 - 10.0	•	0	0	0	0									I
		0.5 - 1.0		•	0	•	•									Ī
		1.0 - 2.0	•	•	0	•	0									Î
		2.0 - 3.0	0	•	•	•	0									Î
G/UC-I4-1	14	3.0 - 4.0	0	0	0	0	0									ſ
		4.0 - 5.0	•	0	•	0	0									ſ
		7.0 - 8.0	0	0	0	0	0									ſ
		9.0 - 10.0	•	0	0	0	0									ſ

Fixed Gases	Purpose/Rationale
	Establish baseline shallow soil conditions within the extent of the proposed bio swale.
	Establish baseline shallow soil conditions within grid I2 and the proposed utility corridor.
	Establish baseline shallow soil conditions within the extent of the proposed bio swale.
	Establish baseline shallow soil conditions within grid I3 and the proposed utility corridor.
	Establish baseline shallow soil conditions within grid I4 and the proposed utility corridor.

Table 1. Proposed Sampling and Analysis Plan (SAP) 7825 San Leandro Street, Oakland, California

			Analyses ⁽²⁾									1					
					Soil				Water				Soil	Gas			
Location / Sample ID	Sample Grid	Sample Depths ⁽¹⁾	VOCs	SVOCs	TPH g/d/mo	CAM 17 Metals	PCBs	VOCs	TPH g/d/mo	CAM 17 Metals	VOCs	ТРН C4 - C9	ТРН С10 - С15	TO-3	TO-15	Fixed Gases	Purpose/Rationale
Proposed Passi	ive Soil Gas	Step Out Sample Location	ons														
PSG-10A		3 feet below surface or bottom of hardscape									•	•	•				Further delineation of soil gas proximate to PSG- 10.
PSG-10B		3 feet below surface or bottom of hardscape									•	•	•				Further delineation of soil gas proximate to PSG- 10.
PSG-10C		3 feet below surface or bottom of hardscape									•	•	•				Further delineation of soil gas proximate to PSG- 10.
PSG-10D		3 feet below surface or bottom of hardscape									٠	•	•				Further delineation of soil gas proximate to PSG- 10.
PSG-25A		3 feet below surface or bottom of hardscape									٠	•	•				Further delineation of soil gas proximate to PSG- 25.
PSG-25B		3 feet below surface or bottom of hardscape									٠	•	•				Further delineation of soil gas proximate to PSG- 25.
PSG-25C		3 feet below surface or bottom of hardscape									٠	•	•				Further delineation of soil gas proximate to PSG- 25.
PSG-25D		3 feet below surface or bottom of hardscape									٠	•	•				Further delineation of soil gas proximate to PSG- 25.
PSG-41A		3 feet below surface or bottom of hardscape									٠	•	•				Further delineation of soil gas proximate to PSG- 41.
PSG-41B		3 feet below surface or bottom of hardscape									٠	•	•				Further delineation of soil gas proximate to PSG- 41.
PSG-41C		3 feet below surface or bottom of hardscape									٠	•	•				Further delineation of soil gas proximate to PSG- 41.
PSG-41D		3 feet below surface or bottom of hardscape									٠	•	•				Further delineation of soil gas proximate to PSG- 41.
PSG-62A		3 feet below surface or bottom of hardscape									٠	•	•				Further delineation of soil gas proximate to PSG- 62.
PSG-62B		3 feet below surface or bottom of hardscape									٠	•	•				Further delineation of soil gas proximate to PSG- 62.
PSG-62C		3 feet below surface or bottom of hardscape									٠	•	•				Further delineation of soil gas proximate to PSG- 62.
PSG-62B		3 feet below surface or bottom of hardscape									٠	•	•				Further delineation of soil gas proximate to PSG- 62.

Table 1. Proposed Sampling and Analysis Plan (SAP) 7825 San Leandro Street, Oakland, California

									Analy	/ses ⁽²⁾]	
					Soil				Water				Soil	Gas				
Location / Sample ID	Sample Grid	Sample Depths ⁽¹⁾	VOCs	SVOCs	TPH g/d/mo	CAM 17 Metals	PCBs	VOCs	TPH g/d/mo	CAM 17 Metals	VOCs	TPH C4 - C9	ТРН С10 - С15	TO-3	TO-15	Fixed Gases	Purpose/Rationale	
Proposed Soil Va	apor Probe	Locations																
SVP-06-5/-8		5.0												•	•	•	Confirm the accuracy of the PSG-06 results, collect fixed gas data to assess bio-attenuation	
		8.0												•	•	•	and assess the vertical extent of chlorinated VOC impacts in soil gas.	
SVP-10-5/-8		5.0												•	•	•	Confirm the accuracy of the PSG-10 results, collect fixed gas data to assess bio-attenuation	
		8.0												•	•	•	and assess the vertical extent of chlorinated VOC impacts in soil gas.	
SVP-13-5/-8		5.0												•	•	•	Confirm the accuracy of the PSG-13 results, collect fixed gas data to assess bio-attenuation and assess the vertical extent of chlorinated VOC impacts in soil gas.	
		8.0												٠	•	٠		
SVP-25-5/-8		5.0												•	•	•	Confirm the accuracy of the PSG-25 results, collect fixed gas data to assess bio-attenuation and assess the vertical extent of chlorinated VOC impacts in soil gas.	
011-20-0/-0		8.0												•	•	•		
SVP-32-5/-8		5.0												•	•	•	Confirm the accuracy of the PSG-32 results, collect fixed gas data to assess bio-attenuation	
3 V F -32-3/-0		8.0												•	•	•	and assess the vertical extent of chlorinated VOC impacts in soil gas.	
SVP-36-5/-8		5.0												•	•	•	Confirm the accuracy of the PSG-36 results, collect fixed gas data to assess bio-attenuation	
SVP-30-5/-8		8.0												٠	•	٠	and assess the vertical extent of chlorinated VOC impacts in soil gas.	
		5.0												•	•	٠	Confirm the accuracy of the PSG-41 results, collect fixed gas data to assess bio-attenuation	
SVP-41-5/-8		8.0												•	•	•	and assess the vertical extent of chlorinated VOC impacts in soil gas.	
		5.0												•	•	•	Confirm the accuracy of the PSG-45 results, collect fixed gas data to assess bio-attenuation and assess the vertical extent of chlorinated VOC impacts in soil gas.	
SVP-45-5/-8		8.0												•	•	•		
		5.0												•	•	•	Confirm the accuracy of the PSG-52 results, collect fixed gas data to assess bio-attenuation and assess the vertical extent of chlorinated VOC impacts in soil gas.	
SVP-52-5/-8		8.0												•	•	•		
		5.0												•	•	•	Confirm the accuracy of the PSG-53 results, collect fixed gas data to assess bio-attenuation	
SVP-53-5/-8		8.0												•	•	•	and assess the vertical extent of chlorinated VOC impacts in soil gas.	

Table 1. Proposed Sampling and Analysis Plan (SAP)7825 San Leandro Street, Oakland, California

									Anal	yses ⁽²⁾]	
			Soil				Water					Soil	Gas					
Location / Sample ID	Sample Grid	Sample Depths ⁽¹⁾	VOCs	SVOCs	TPH g/d/mo	CAM 17 Metals	PCBs	VOCs	TPH g/d/mo	CAM 17 Metals	VOCs	ТРН C4 - C9	TPH C10 - C15	TO-3	TO-15	Fixed Gases	Purpose/Rationale	
SVP-57-5/-8		5.0												٠	•	•	Confirm the accuracy of the PSG-57 results, collect fixed gas data to assess bio-attenuation	
3VF-37-3/-0		8.0												•	•	•	and assess the vertical extent of chlorinated VOC impacts in soil gas.	
SVP-61-5/-8		5.0												٠	•	•	Confirm the accuracy of the PSG-61 results, collect fixed gas data to assess bio-attenuation	
377-01-3/-0		8.0												•	•	•	and assess the vertical extent of chlorinated VOC impacts in soil gas.	
SVP-62-5/-8		5.0												•	•	•	Confirm the accuracy of the PSG-62 results, collect fixed gas data to assess bio-attenuation	
3 V F -02-3/-0		8.0												•	•	•	and assess the vertical extent of chlorinated VOC impacts in soil gas.	
IDW Samples																		
IDW-SOIL			•		•	•											IDW characterization.	
IDW-WATER								•	•	•								

Notes:

"•" indicates discrete sample to be collected from this location and depth and run for the given analysis.

"O" indicates discrete sample to be collected from this location and depth and HELD for the given analysis.

"feet bgs" indicates feet below ground surface.

"GW" indicates groundwater.

"IDW" indicates investigation-derived waste.

"--" indicates not applicable.

(1) "Sample Depths" indicates approximate feet below current ground surface (ft bgs) of top of sample unless otherwise specified.

Samples will also be taken at signs of contamination and at changes in lithology.

(2) "Analyses" indicates laboratory anlytical methods as follows:

"TO-3" indicates total petroleum hydrocarbons as gasoline by USEPA Method TO-3.

"TO-15" indicates volatile organic compounds by USEPA Method TO-15.

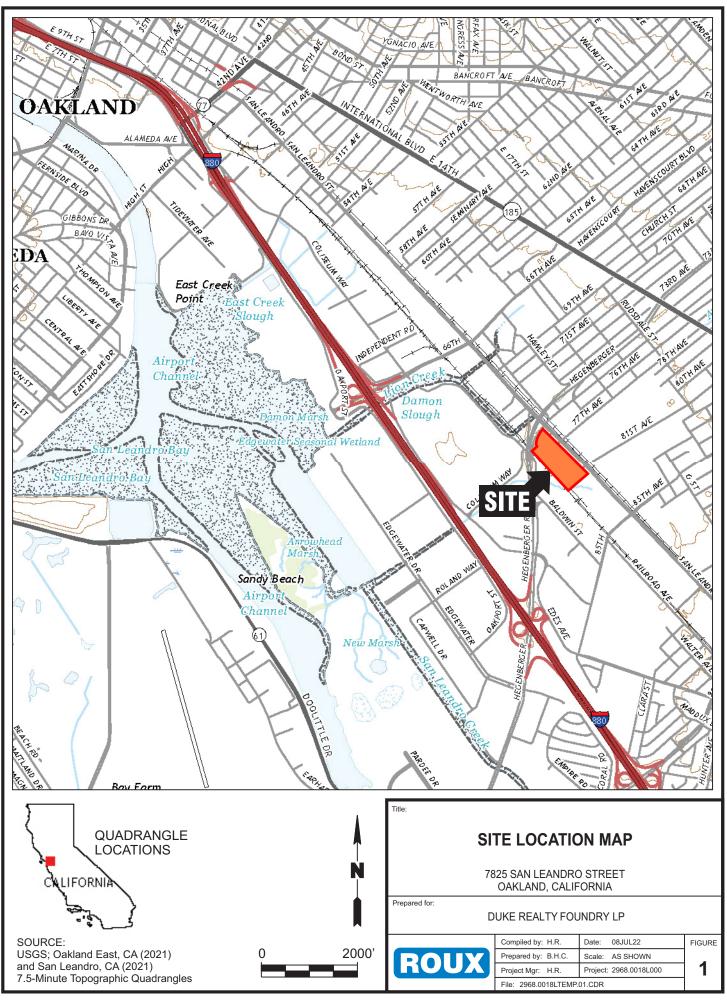
"Fixed Gases" for soil gas analyses indicates helium, carbon monoxide, carbon dioxide, methane, nitrogen and oxygen by ASTM Method D-1946.

"VOCs" for soil and groundwater analyses indicates Volatile Organic Compounds by USEPA Method 8260B.

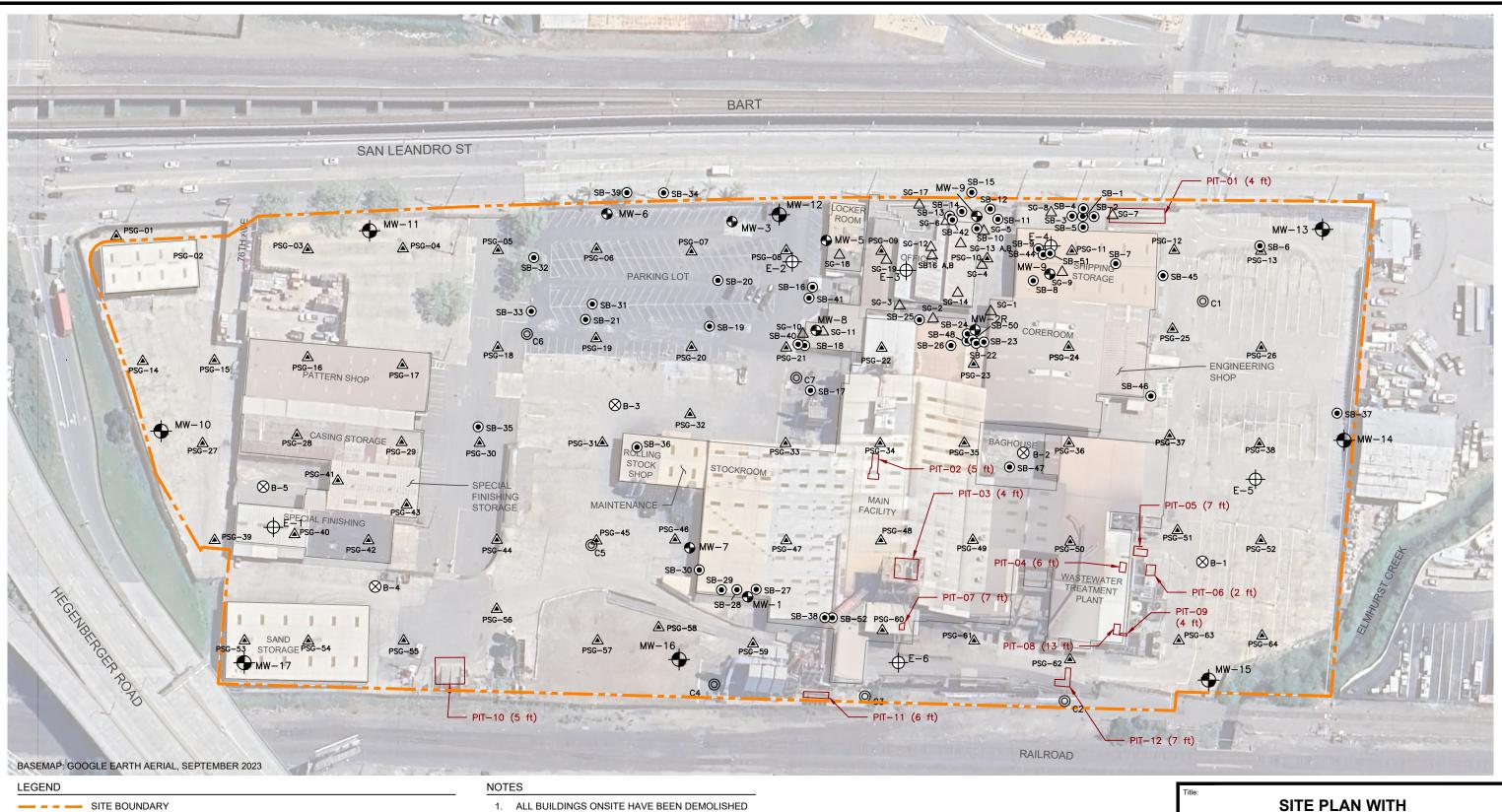
"SVOCs" for soil analysis indicates Semi-Volatile Organic Compounds by USEPA Method 8270C.

"CAM 17 Metals" for soil and groundwater analyses indicates the Title 22/CAM 17 list of Metals by USEPA Method 6020. Water samples will be filtered (0.45 micron) and unfiltered.

"TPH g/d/mo" for soil and groundwater analyses indicates Total Petroleum Hydrocarbons as gasoline, diesel and motor oil by USEPA Method 8260B and/or 8015.


"PCBs" for soil analyses indicates Polychlorinated biphenyls by USEPA Method 8082A.

"VOCs, TPH C4-C9, and TPH C10-15" for soil gas analyses indicates chlorinated volatile organic compounds and volatile hydrocarbons by USEPA Method 8260C.


*All borings will be continuously logged by a Roux geologist or engineer and screened for VOCs with a photoionization detector (PID). In addition to the scope described above, soil samples will be collected at depths where elevated PID readings are observed (greater than 10 parter per million) and immediately beneath the potentially impacted zone, at the next depth without elevated readings. Soil samples will not be collected below the groundwater interface. Multi-depth grab groundwater samples will be collected from co-located borings noted as "1st Encountered GW" and "2nd Encountered GW".

FIGURES

- 1. Site Location Map
- 2. Site Plan with Historical Sampling Locations
- 3. Groundwater Contour Map
- 4A. Proposed Grab Groundwater and Soil Vapor Sampling Locations
- 4B. Proposed Grab Groundwater and Soil Vapor Sampling Locations with PCE Soil Vapor Heat Map
- 4C. Proposed Grab Groundwater and Soil Vapor Sampling Locations with TCE Soil Vapor Heat Map
- 4D. Proposed Grab Groundwater and Soil Vapor Sampling Locations with Benzene Soil Vapor Heat Map
- 5A. Proposed Soil and Groundwater Sampling Locations
- 5B. Proposed Soil and Groundwater Sampling Locations with ACEHD Modeled Sand Layers

2968L\0018L\TEMP\2968.0018LTEMP.01.CDR

AS OF NOVEMBER 2023.

- SITE BOUNDARY Φ ENVIRONMENTAL SOIL BORING SAMPLE LOCATIONS (HALEY & ALDRICH, 2002) \otimes GEOTECH SOIL BORING (IWASA, 2022)
- EXISTING GROUNDWATER MONITORING WELLS (ROUX, 2023)
- Ð DECOMMISSIONED GROUNDWATER MONITORING WELL (BSK, 1993; BSK, 2006)
- $oldsymbol{O}$ SOIL BORING (THE SOURCE GROUP, INC., 2008)
- ▲ PASSIVE SOIL GAS SAMPLING LOCATIONS (ROUX, 2023)
- $^{\odot}$ CPT BORINGS (IWASA, 2022)

_ _ _

- Δ SOIL GAS SAMPLING LOCATIONS (SGI, 2007; SGI, 2008; SGI, 2009)
- IDENTIFIABLE PIT LOCATION
 - PIT-0X (DEPTH OF PIT)

SITE PLAN WITH **HISTORICAL SAMPLING LOCATIONS**

7825 SAN LEANDRO STREET OAKLAND, CALIFORNIA

Prepared for

DUKE REALTY FOUNDRY LP

	Compiled by: JO	Date: 30APR2024	FIGURE
DOUY	Prepared by: CB	Scale: AS SHOWN	
(RUUA)	Project Mgr: JO	Project: 1793.0030S000	2
	File: 7825 SAN LEANDRO ST.DWO	3	

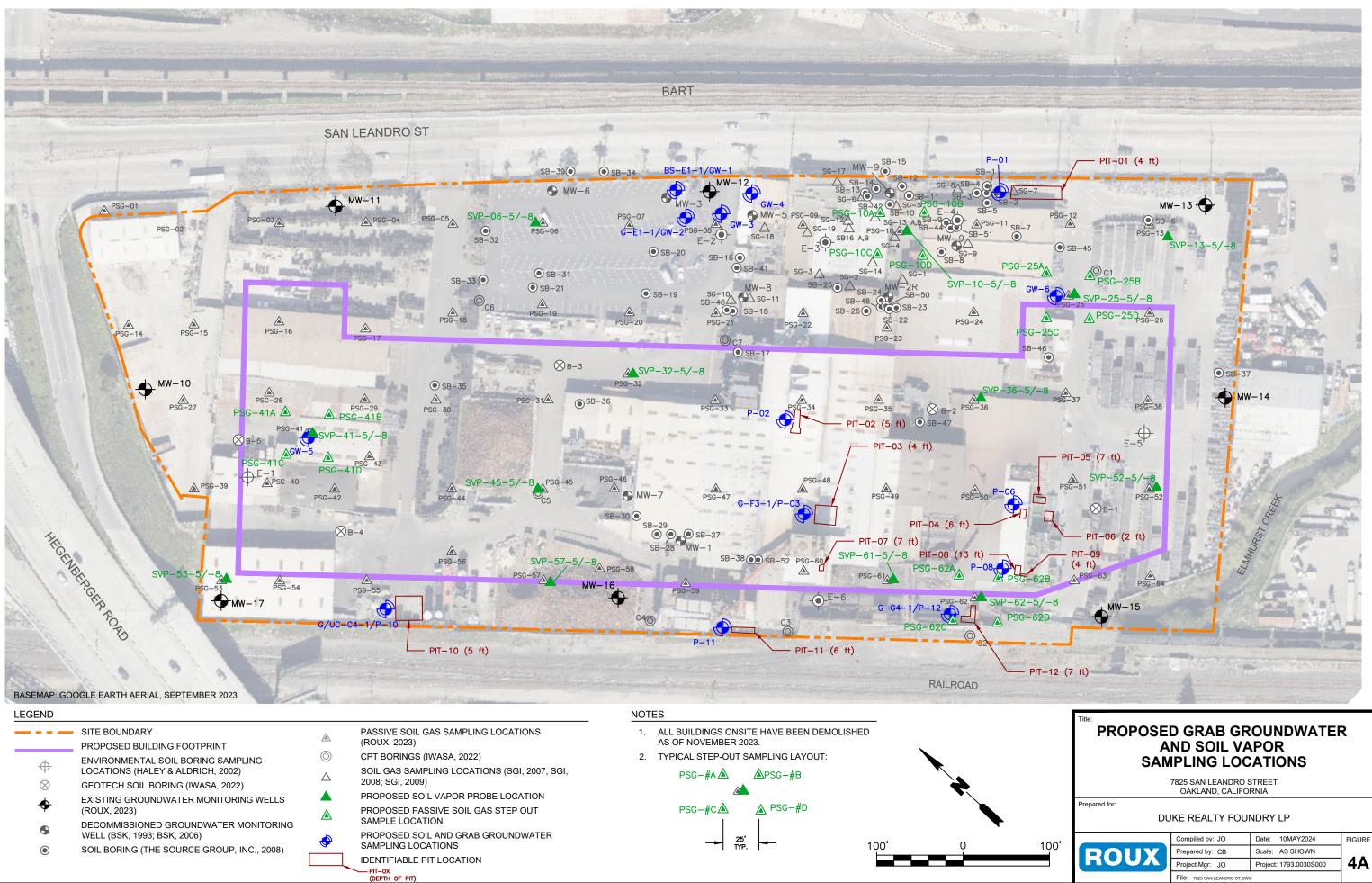
100'

- - SITE BOUNDARY GROUNDWATER MONITORING WELL (ROUX, 2023) +
 - GROUNDWATER ELEVATION CONTOUR
 - INFERRED GROUNDWATER FLOW DIRECTION

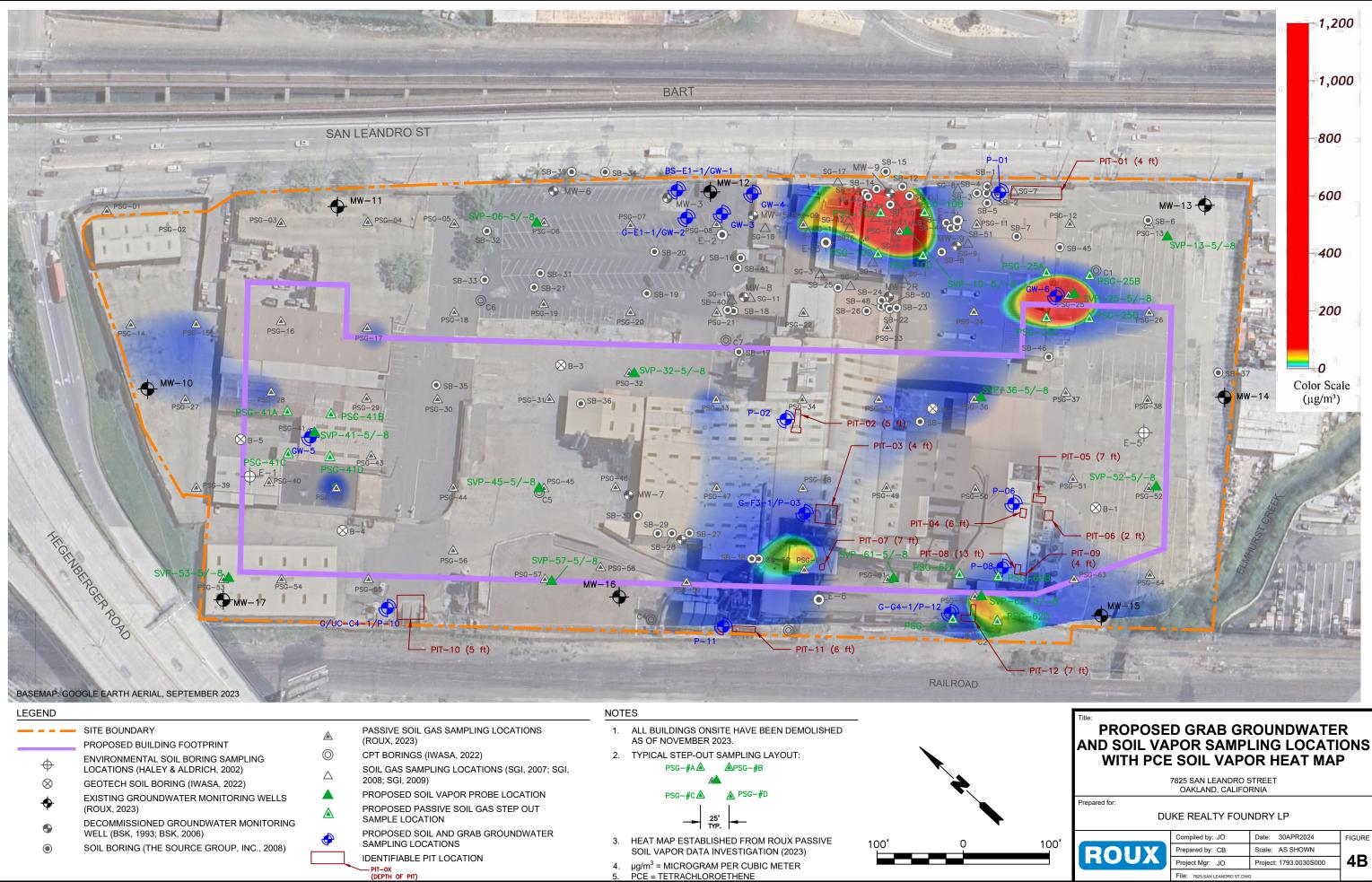
- GROUNDWATER ELEVATIONS REPORTED IN FEET ABOVE 1. MEAN SEA LEVEL, NORTH AMERICAN VERTICAL DATUM (NAVD88).
- 2. DASHED INDICATES INFERRED CONTOUR.
- 3. i = APPROXIMATE HYDRAULIC GRADIENT
- 4. GROUNDWATER WELL GAUGING DATA WAS COLLECTED AUGUST 9, 2023.
- 5. ALL BUILDINGS ONSITE HAVE BEEN DEMOLISHED AS OF NOVEMBER 2023.

100

GROUNDWATER CONTOUR MAP

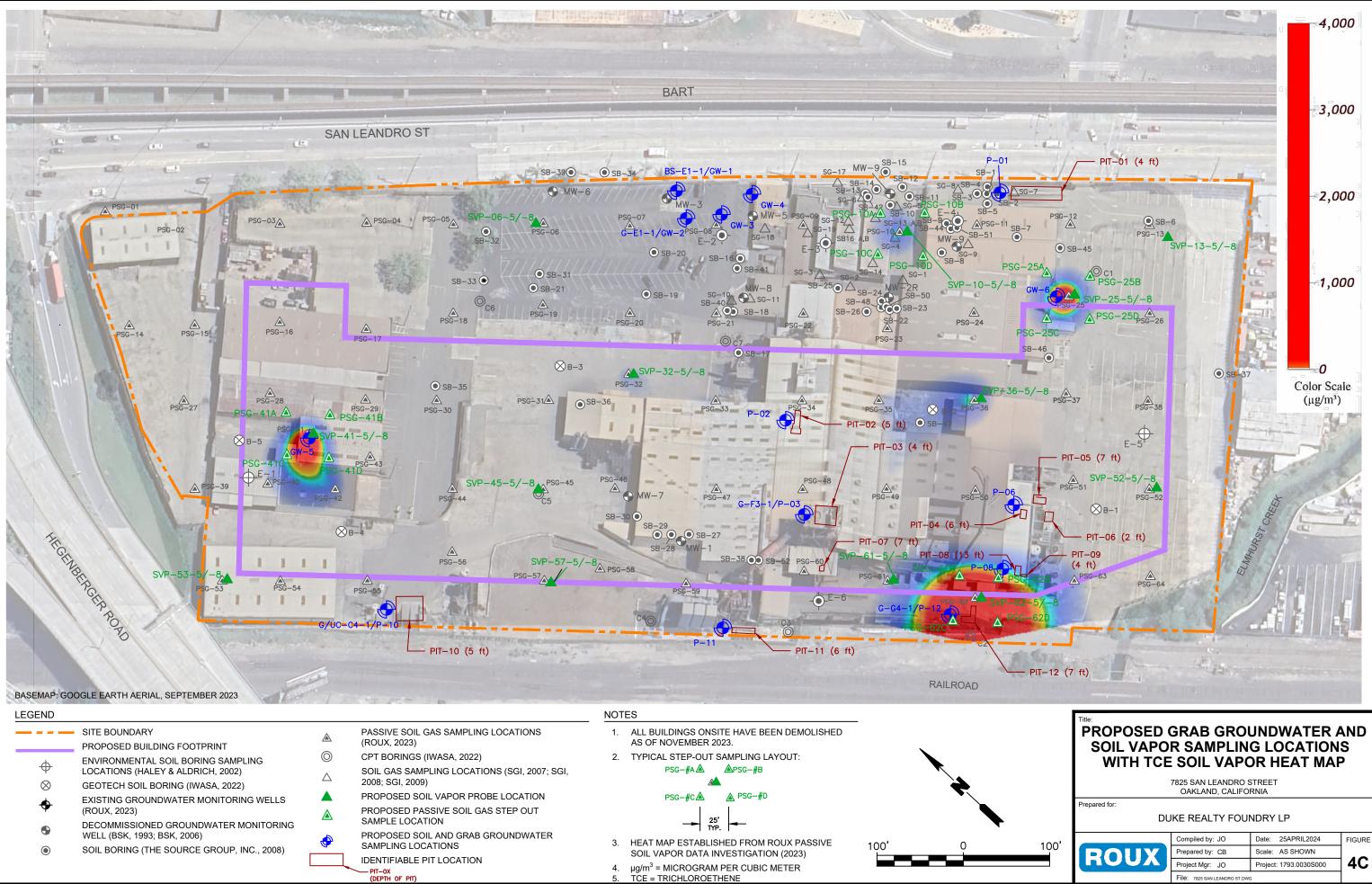

7825 SAN LEANDRO STREET OAKLAND, CALIFORNIA

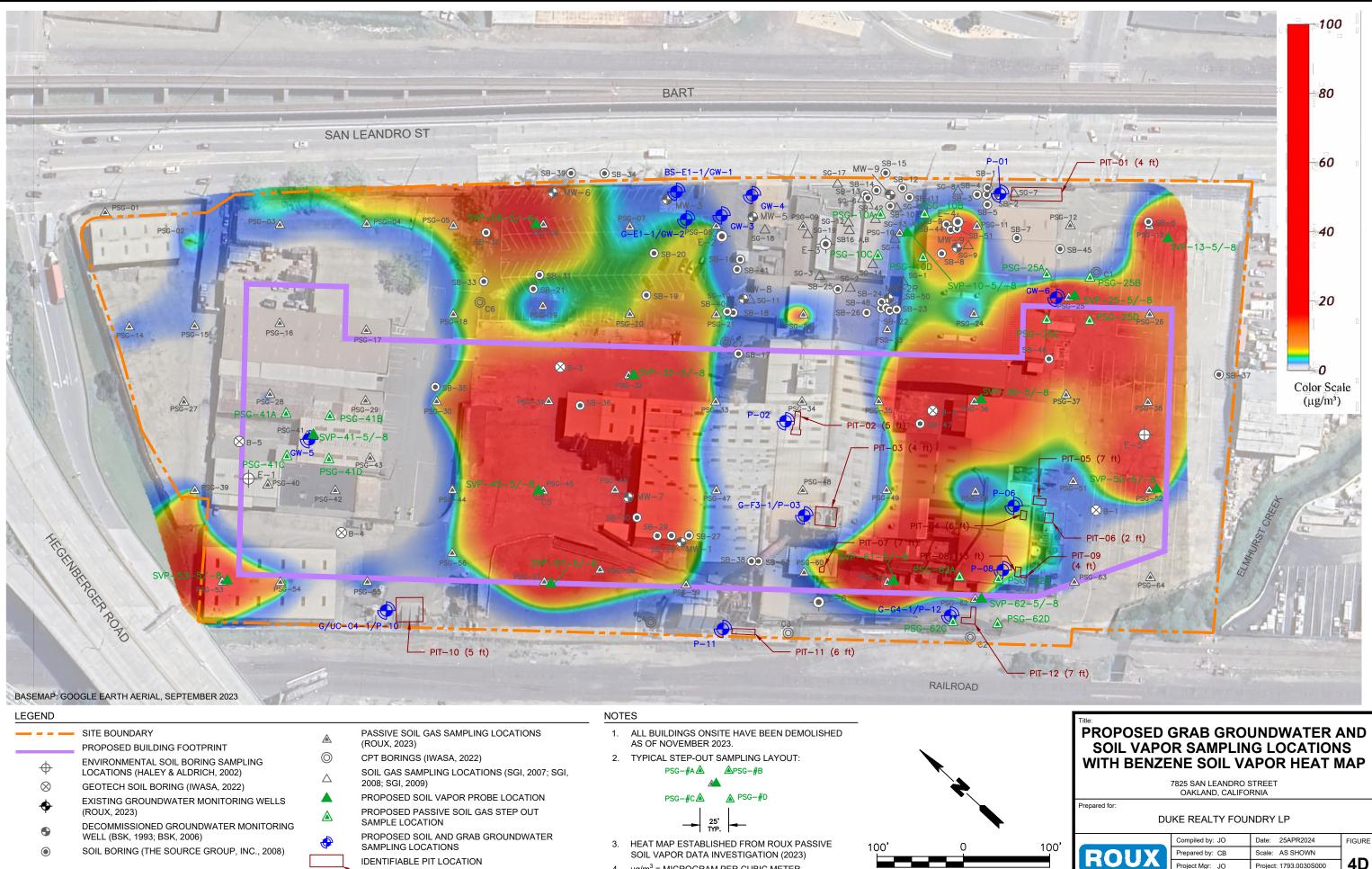
Prepared for:



DUKE REALTY FOUNDRY LP

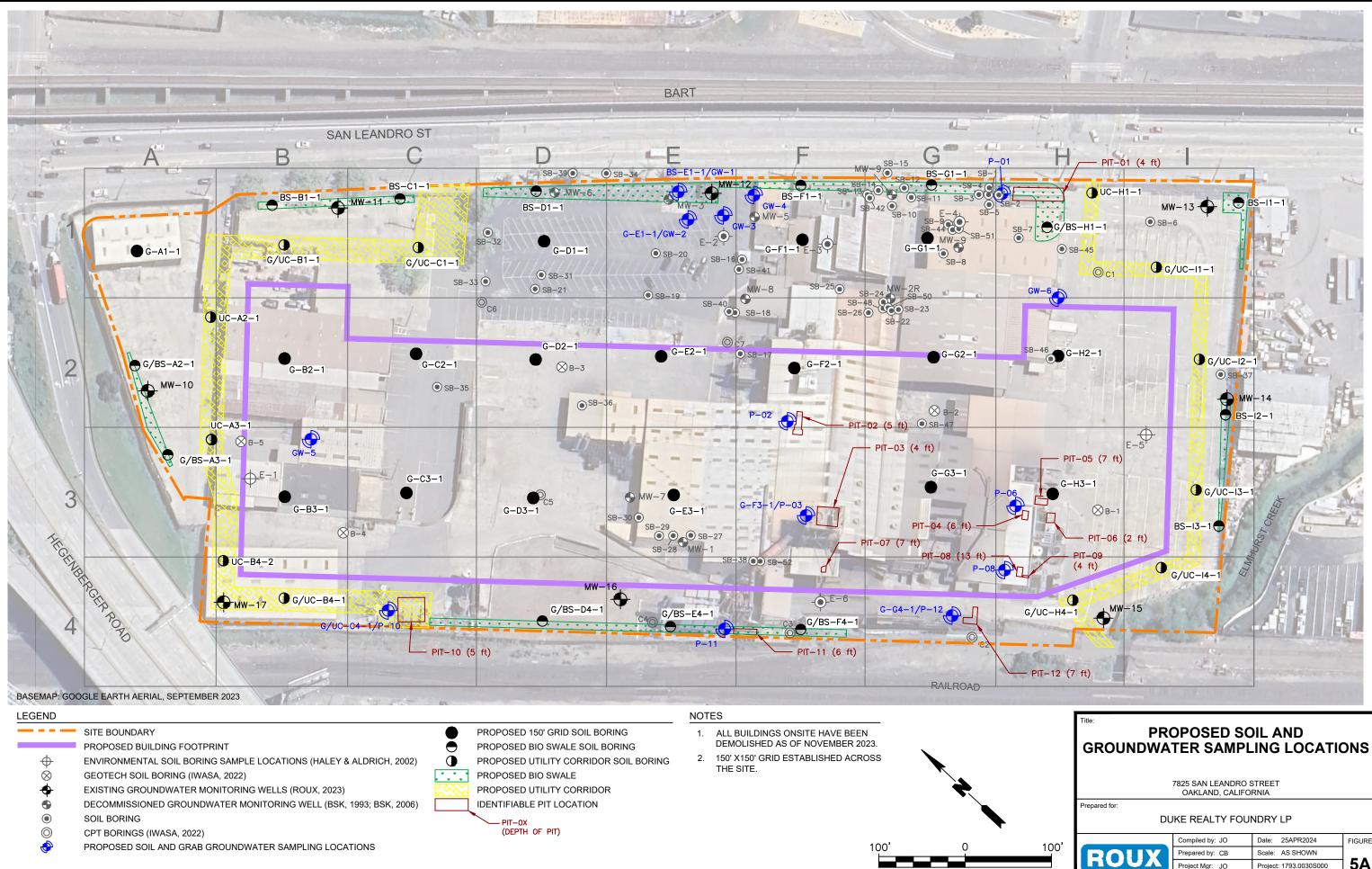
Compiled by: JO	Date: 30APR2024	FIGURE
Prepared by: ET	Scale: AS SHOWN	
Project Mgr: JO	Project: 1793.0030S000	3
File: 7825 SAN LEANDRO ST.DWG		

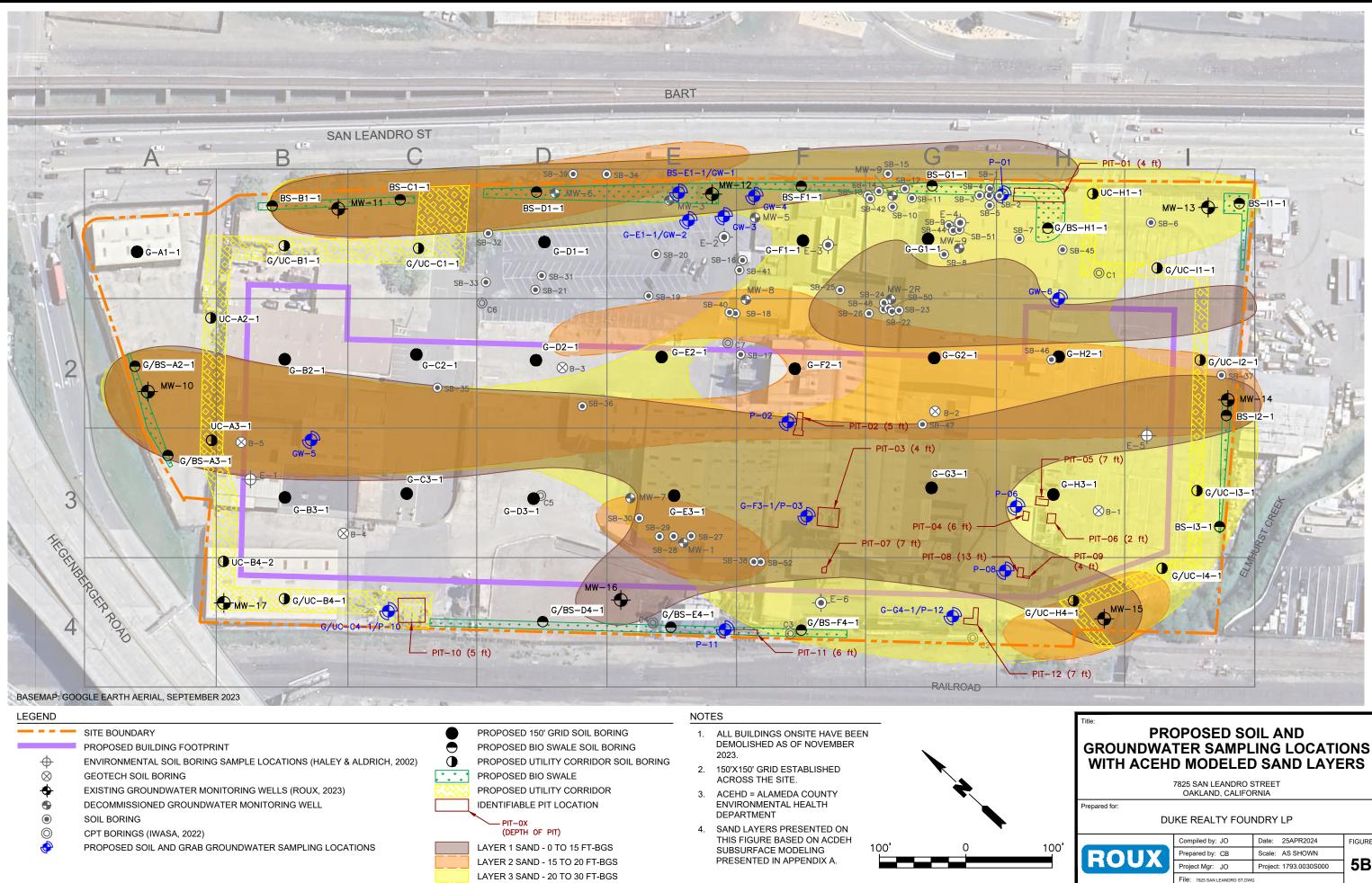



Compiled by: JO	Date: 10MAY2024	FIGURE
Prepared by: CB	Scale: AS SHOWN	
Project Mgr: JO	Project: 1793.0030S000	4A
File: 7825 SAN LEANDRO ST.DWO	3	

– PIT–OX (DEPTH OF PIT)

	Compiled by: JO	Date: 30APR2024	FIGURE
	Prepared by: CB	Scale: AS SHOWN	
UA J	Project Mgr: JO	Project: 1793.0030S000	4 B
	File: 7825 SAN LEANDRO ST.DWO	3	




4. $\mu g/m^3 = MICROGRAM PER CUBIC METER$

— PIT-OX (DEPTH OF PIT)

	Compiled by: JO	Date: 25APR2024	FIGURE
	Prepared by: CB	Scale: AS SHOWN	
UA)	Project Mgr: JO	Project: 1793.0030S000	4D
	File: 7825 SAN LEANDRO ST.DWO	3	

	Compiled by: JO	Date: 25APR2024	FIGURE
	Prepared by: CB	Scale: AS SHOWN	
UA J	Project Mgr: JO	Project: 1793.0030S000	5A
	File: 7825 SAN LEANDRO ST.DWO	3	

	Compiled by: JO	Date: 25APR2024	FIGURE		
DOILY	Prepared by: CB	Scale: AS SHOWN			
RUUA	Project Mgr: JO	Project: 1793.0030S000	5B		
	File: 7825 SAN LEANDRO ST.DWO	3			

APPENDICES

- A. Site Conceptual Model
- B. Soil Gas Isoconcentration Maps (Heat Maps)
- C. Cross Sections
- D. Boring Logs
- E. Standard Operating Procedures
- F. Field Sampling Forms
- G. TTLC, STLC, and TCLP Threshold Trigger Values

Revised Site Conceptual Model & Data Gap Investigation Work Plan 7825 San Leandro Street, Oakland, California

APPENDIX A

Site Conceptual Model

Section / Sub-

Sec NoSection NameDetails1Introduction

This Site Conceptual Model (SCM) was prepared by Roux Associates, Inc. (Roux) on behalf of Duke Realty Foundry LP (Prologis) for the 7825 San Leandro Street property located in Oakland, California case. Alameda County Department of Environmental Health (ACDEH) is the lead regulatory oversight agency for this case. Case identifiers are provided below:

Site Name	AB&I Redevelopment	GeoTracker ID:	T10000019792
Site Address	7825 San Leandro Street, Oakland, California	ACDEH Case No.:	RO0003535

This SCM was prepared in accordance with industry best practices.

1.1 Change log

This document is established using the recent data collected for the Site. No previous versions of SCM for the Site have been established.

1.2 Responsible Party Identification

		Method of
Responsible Party Name	Relationship	Identification
Duke Realty Foundry LP	Developer	VRAA

NOR: Notice of Responsibility; VRAA: Voluntary Remedial Action Agreement

	References	Data Gap	Method to Address Data Gap
		No	
		No	
Ī		No	
ł			I

Section / Sub-

Sec No Section Name Details

2 Site Location and Land Use

2.1 Site Location

APN (s)	41-4175-18; 41-4175-19; 41-4208-1; 41-4209-1-1; 41-4209-3-2; 41-4209-8-1; 41-4209-1- 2; 41-4209-7; 41-4175-16; 41-4175-17; 41-4175-3-2; 41-4175-5; 41-4175-6; 41-4175-10
Physical Address	7825 San Leandro Street, Oakland, California
Cross Street(s)	Hegenberger Rd and San Leandro St
Site Size (square feet)	631,620

2.2 Surrounding Property Descriptions and Land Use

Direction &			Sensitive			
Distance from Site (feet)	Property and Operations Description	Address	Receptors	Use(s)		Tenants
North	Union Pacific Railroad followed by Hegenberger Road	NA	None Identified	Railroad & Roadway	NA	
100						
East	San Leandro Street and Bay Area Rapid Transit train tracks followed by industrial	800 75th ave	None Identified	Roadway & Industrial	NA	
200	warehouses	through 851 81st				
		Ave A				
South	Commercial space including Estrellas De Sinaloa (restaurant), U.S. Spring Service, and	8119 San Leandro	None Identified	Commercial	NA	
30 to 300	automotive service store, SF Oakland Truck Shop, and a truck repair business	St				
West	Union Pacific Railroad followed by Elmburst Creek	NA	None Identified	Roadway & Surface	NA	
Adjacent				Water Body		

2.3 Description of Site Improvements and Land Use

Total Building Footprint	~230,000 square feet (buildings were demolished in 2023)
Hardscape	~354,420 square feet
Landscape	~27,000 square feet
Exposed Earth	~20,200 square feet

				Subgrade	
Building ID	Footprint (square feet)	No. Floors	Foundation Type	Components	Year of Construction / Demolitie
Building 1 (demolished 2023)	~5,022	1	Unknown	NA	1993 / 2023
Building 2 (demolished 2023)	~36,293	1	Unknown	NA	<1960 / 2023
Building 3 (demolished 2023)	~12,240	1	Unknown	NA	<1960 / 2023
Building 4 (demolished 2023)	~2,602	1	Unknown	NA	<1960 / 2023
Building 5 (demolished 2023)	~156,962	2	Unknown	NA	<1960 / 2023
Building 6 (demolished 2023)	~772	NA	Slab-on-Grade	NA	<1980 / 2023

Anthropogenic Preferential	ΝΑ
Pathways	
Other Improvements	construction of an approximately 320,000 square-foot warehouse building and associated parking lot

References	Data Gap	Method to Address Data Gap
Figures 1 through 3; References 2 and 3	No	
Figures A-1 through A-3; References 2 and 3	No	
Figures A-1 through A-3; Reference 2	No	
Figure A-2; Reference 2	No	
Reference 2; Figure A-2	No	
Reference 2; Figure A-2	No	
Reference 2; Figure A-2	No	
Reference 2; Figure A-2	No	
Reference 2; Figure A-3	No	
	No	
Reference 2; Figure A-3	No	
Reference 6 and 15	No	
Reference 6 and 15	No	
	No	
	110	
Attachments B	No	
Reference 6 and 15;		
Attachments B	No	
Reference 6 and 15	No	
	No	
	Figures 1 through 3; References 2 and 3 Figures A-1 through A-3; References 2 and 3 Figures A-1 through A-3; Reference 2 Figure A-2; Reference 2 Figure A-2; Reference 2 Reference 2; Figure A-2 Reference 2; Figure A-2 Reference 2; Figure A-2 Reference 2; Figure A-3 Reference 6 and 15 Reference 6 and 15 Reference 6 and 15; Attachments B Reference 6 and 15; Attachments B Reference 6 and 15; Attachments B	Figures 1 through 3; References 2 and 3 No Figures A-1 through A-3; Reference 2 and 3 No Figures A-1 through A-3; Reference 2 No Figure A-2; Reference 2 No Reference 2; Figure A-2 No Reference 2; Figure A-3 No Reference 3 No Reference 4 No Reference 5 No Reference 6 No Reference 6 No Reference 6 No Reference 6 No Reference 6<

Section / Sub-Sec No Section Name

2.4 Site Use History

ails						References	Data Gap	Method to Address D Gap
	Known previous historical environmental and geotechnical reports that have been upl	oaded to GeoTracker	:	Yes		See Geotracker		
Time Period	Operation Description	Tenant / Operator Name	Location	Associated Primary PCOCs	Associated Environmental Cases			
1925-1940	mostly undeveloped; three single-family dwellings;	Unknown	Dwelling #1; Dwelling #2; Dwelling #3	NA	No	Reference 6; Attachment A	No	
1941-1959	foundry buildings, oil reclaiming plant, truck spray painting, shed, and storage areas for scrap iron piles; the construction of a railroad spur leading onto the Subject Property from the Union Pacific Railroad to the west	McWane, Inc.; Bosely Investments LTD; Ciudad Holdings LLC; Boscacci Allan J & Mark Melvyn I Trs	Foundry Buildings; oil reclaiming plant; truck spray painting area; Complex	Total petroleum hydrocarbons (TPH) as gasoline and diesel (TPH-g, TPH-d); polycyclic aromatic hydrocarbons (PAHs); volatile organic compounds (VOCs)	Νο	Reference 6	No	
1960-1980s	no significant changes; the southeastern corner of the Subject Property is used as a truck yard and has a small building for truck maintenance	McWane, Inc.; Boscacci, Allan J & Mark Melvyn I Trs; and others.	Foundry Buildings; oil reclaiming plant; truck spray painting area; Complex	TPH-g; TPH-d; PAHs; VOCs	Νο	References 6	No	
1993-2022	the main foundry building was expanded to the north, and the current sand storage building was constructed at the northwest corner of the Subject Property	McWane, Inc.; Boscacci, Allan J & Mark Melvyn I Trs; and others.	Foundry Buildings	TPH-g; TPH-d; PAHs; VOCs	Yes, GeoTracker Case Number T0600100065 (closed case); T10000019792 (current case)	References 1 and 4	No	
2022-2023	The operator of the foundry, AB&I, ceased production at the site in October of 2022 and vacated the site in April 2023. The aforementioned buildings were demolished by November 2023.	Duke Realty Foundry LP	NA	NA	Yes, GeoTracker Case Number T0600100065 (closed case); T10000019792 (current case)	Reference 15	No	
cture								
System Component	Material Stored/Conveyed	Size/Quantity	Status	Installation Date	URF Filing Date	Figure A-3		
UST	Unleaded Gasoline Fuel	8,000/gallon	Removed	Unknown	NA	References 4 and 6	No	
UST	Regular Leaded Gasoline Fuel	550/gallon	Removed	Unknown	NA	References 4 and 6	No	
UST	Regular Leaded Gasoline Fuel	3*10,000/gallon	Removed	Unknown	NA	References 4 and 6	No	
UST	Diesel Fuel	10,000/gallon	Removed	Unknown	NA	References 4 and 6	No	
UST	Initially Mineral Spirits and Later 1,1,1-trichloroethane (1,1,1-TCA)	8,000/gallon	Removed	Unknown	NA	References 4 and 6	No	

2.5 UST Systems Infra

Syst	em Component	Material Stored/Conveyed	Size/Quantity	Status	Installation Date	URF Filing Date
	UST	Unleaded Gasoline Fuel	8,000/gallon	Removed	Unknown	NA
	UST	Regular Leaded Gasoline Fuel	550/gallon	Removed	Unknown	NA
	UST	Regular Leaded Gasoline Fuel	3*10,000/gallon	Removed	Unknown	NA
	UST	Diesel Fuel	10,000/gallon	Removed	Unknown	NA
	UST	Initially Mineral Spirits and Later 1,1,1-trichloroethane (1,1,1-TCA)	8,000/gallon	Removed	Unknown	NA

Section / Sub-Sec No Section Name Details

2.6 Other Hazardous Materials or Waste Infrastructure

is materials of waste mina					
System Component	Material Stored/Conveyed	Size/Quantity	Status	Installation Date	Removal Date
AST	Diesel Fuel	1,000/gallon	Removed		
AST	Diesel Fuel	1,000/gallon	Removed		
Drum	Universal Waste	55/gallon	Removed		
Drums	Mobiltherm 603, SAE 30 Motor Oil, DTE 24/25/26 Hydraulic Oil, B-230 Cosmolubric,	Several 55/gallon	Unknown		
	Rando HD 46, CalFoam ES-303, Multifak EP 2				
Compressed Gas Cylinders	MagneGas, Propylene, Petroleum Gases Liquified	Unknown	Unknown		
Tank	Propane	Several~20lb	Unknown		
Drum	Silver 70 Multi-Purpose EP Grease	Several 15/gallon	Unknown		
Poly Container	Used Oil	200- or 250- gallon	Unknown		

2.7 Subsurface Fill and Excavations

				Certified Clean	
				Documentation on	
Backfill Purpose	Description	Location	Date of Fill	GeoTracker	Date of Certification
UST System	Three 10,000-gallon USTs were removed in 1987 and the remaining USTs were removed	USTs	1987-1992	No	NA
	between August 1991 and June 1992, approximately 680 cubic yards of affected soil was				
	removed				

2.8 Other Recognized Environmental Conditions (RECs)

izeu_						
[REC Type	Description				
	On-Site REC	TPH in soil				
	On-Site REC	TPH and VOCs in groundwater				
	On-Site REC	TPH and VOCs in soil gas				
	On-Site REC	Aluminum and magnesium in stormwater at levels exceeding the Level 2 Numeric Action Levels (NAL)				
	On-Site REC	Industrial use of the Subject Property as a foundry since 1940				
_						

2.9 Exposure Controls and Remediation Systems

em	ns				
	Engineering controls currently employed at the Site to control otherwise complete exposure pathways:	None			
	Institutional controls currently employed at the Site to control otherwise complete exposure pathways or to protect identified engineering controls:	None			
	Identify remediation systems and remediation system components at the Site:	None			

Defense		Method to Address Data
 References	Data Gap	Gap
Reference 6	No	
	1	II
Reference 6	No	
	1	
References 6 and 8	No	
References 6 and 8	No	
References 6 and 8	No	
Reference 6 Reference 6	No No	
Reference o	INO	
Reference 6	No	
nererence o		
Deference (No	
Reference 6	No	
Reference 6	No	

Section	/ Sub-
---------	--------

Subsurface Lithology:

Sec No	Section Name	Details
3	Physical Setting	
3.1	Regional Geology	y and Hydrogeology The Site is located in the San Francisco Bay geologic region approximately 12 miles east-southeast of San Francisco and 4.5 miles southeast of Down Town Oakland, California. The Site lies with the East Bay Plain groundwater basin. The region faults trending roughly northwest-southeast along the foothills of the East Bay, most notably, the Hayward Fault located approximately 2.25 miles northeast of the Site. The East Bay Plains consists of alluvial sediments associated with coalesci nearby East Bay Hills and estuarine sedimentary deposits as a result of changes in sea level over geologic time. These unconsolidated sedimentary deposits are described at depth as unconsolidated, moderately sorted, fine sand, and silt, with o
3.2	Local Geology an	occasional thin beds of coarse sand. The estuarine deposits are described as a well sorted, fine to medium grained sand and silt, with lenses of sandy clay and clay. d Hydrogeology
		Borings advanced at the Site between 1993 and 2023 have extended to a total approximate depth of 81 feet bgs. Soils encountered in the unsaturated and saturated zones beneath the Site are predomingraded sand) and lean/fat clay with interfingered lenses of mixtures that include sand, silt, clay, and gravel to the maximum depth explored.
		Shallow groundwater conditions are observed at the Site with water levels in historical (prior to well destruction in 2011) and existing monitoring wells (August 2023) ranging between 4.55 and 7.91 feet 2023 groundwater level monitoring data collected from existing wells MW-10 through MW-17, the Site-specific groundwater flow direction and gradient appears radial (Figure 5). Gradients under these the Site ranged between 0.0027 and 0.067 feet/feet based on the monitoring well data. The groundwater gradient at the Site is suspected to be partially influenced by Elmhurst Creek and Arroyo Viejo C

groundwater generally flowed to the northwest at a hydraulic gradient of approximately 0.006 feet per foot (ft/ft), however, these wells were spatially limited relative to the overall footprint of the Site groundwater flow conditions are suggested by the monitoring well data collected in August 2023, interpretation and modeling by Roux and ACDEH indicate that the measured gradient may. As radial groundwater conditions are unlikely at this Site due to the absence of any significant hydraulic sink (i.e., groundwater extraction wells), the groundwater flow direction at the Site has been int

modeling conducted by ACDEH (ACDEH subsurface modeling figure set presented in Attachment C) and the regional geologic framework flowing to the northwest. The interpreted northwesterly groun generally consistent with observations made during historical groundwater monitoring events .

Based on lithologic data shown in the cross sections, it appears that the water bearing zone consists of discontinuous lenses of coarse-grained materials between 10 and 25 feet bgs across the Site, how results (Attachment C) suggest that multiple sand layers at the Site are more continuous than previously interpreted. Based on observations during well installation and monitoring and analysis of litho Roux and ACDEH, confined groundwater conditions may be present at the Site.

Although groundwater in the East Bay Plain is generally considered a potential future source of drinking water, there are no permitted drinking water wells within one mile of the Site, nor is the shallow area likely to be used as a public drinking water source in the foreseeable future.

Water Bearing Zone ID	Media Type and Classification	Prevailing Hydraulic Gradient Direction and Magnitude	Top & Bottom of Zone [feet bgs]	Depth to Groundwater in Wells [feet bgs]	Min & Max Depth to First Enco [feet bgs]
Shallow	There are eight (8) groundwater monitoring wells at the Site that were installed and surveyed in July/August 2023. Depths to water from top of casing (TOC) were measured and groundwater flow direction and gradient were calculated. Groundwater has been encountered at depths between approximately 4.5 and 8 feet below ground surface.	Groundwater measurements from existing monitoring wells deomnstrate radial groundwater flow ranging between north, west, and south. Previously inferred to be variable between northwest and west. Modeling performed by ACDEH interprets groundwater flow direction to the northwest following sand units between	NA	4.55 to 7.91	NA

			Method to Address
	References	Data Gap	Data Gap
n is defined by numerous cing alluvial fans from the h clayey silt and	Reference 3	No	
minantly fill material (well			
eet bgs. Based on August se assumptions across o Creek and the proximity og data indicated that te. Although radial			
terpreted based on ndwater flow direction is	References 2, 4, 5, 8, 13, 14; Figure A-5; Attachment C	Yes	Continued quarterly groundwater monitoring.
wever, ACDEH modeling plogy across the Site by			
w groundwater in this			
	L		
countered Groundwater gs]			
	Reference 8 and 12	Yes	Additional groundwater sampling and quarterly groundwater monitoring.

Section / Sub-

Sec No Section Name

Details	
Groundwater Sources and Sinks:	Unknown
Variations in Magnitude and Direction of Lateral and Vertical Groundwater	
Gradient Within Each Water Bearing	Based on August 2023 data, groundwater gradient ranges from 0.0027 ft/ft to 0.0067 ft/ft.
Zone:	

3.3 Monitoring Well Network Evaluation

Monitoring Well ID	Screened Interval & Associated Water Bearing Zone ID(s)	Is the well appropriately screened to evaluate LNAPL?	Is the well appropriately screened to evaluate DNAPL?	Is the well appropriately developed and maintained?	Is the well location known, acc is uploaded to Ge
MW-10	4.5 - 14.5 feet below ground surface (ft bgs)	No	No	Yes	Yes
MW-11	4.5 - 14.5 ft bgs	No	No	Yes	Yes
MW-12	14.5 - 24.5 ft bgs	No	No	Yes	Yes
MW-13	9.5 - 19.5 ft bgs	No	No	Yes	Yes
MW-14	4.5 - 14.5 ft bgs	No	No	Yes	Yes
MW-15	4.5 - 14.5 ft bgs	No	No	Yes	Yes
MW-16	4.5 - 14.5 ft bgs	No	No	Yes	Yes
MW-17	4.5 - 14.5 ft bgs	No	No	Yes	Yes

Identify wells that are routinely excluded from calculations of potentiometric surface or groundwater elevation:	NA
Identify wells that are excluded from calculation of isoconcentration contours in for each water bearing zone:	NA
Is the monitoring well network sufficient to delineate the lateral extents of the groundwater plume that exceeds water quality standards?	No
Is the monitoring well network sufficient to delineate the vertical extents of the groundwater plume that exceeds water quality standards?	No

	References	Data Gap	Method to Address Data Gap
	Figure A-5	No	
n, accessible and survey data to GeoTracker?			
Yes	Reference 8	No	
Yes	Reference 8	No	
Yes	Reference 8	No	
Yes	Reference 8	No	
Yes	Reference 8	No	
Yes	Reference 8	No	
Yes	Reference 8	No	
Yes	Reference 8	No	
		No	
		No	
	Reference 8 and 12	Yes	Vinyl chloride plume at MW-12 to be further investigated with found grab groundwater

Reference 8 and 12

No

sampling locations surrounding MW-12

Vinyl chloride plume at MW-12 to be further investigated with found

grab groundwater sampling locations surrounding MW-12

Section / Sub-

4

Release and Source Release Occurrence 4.1 Releases #1 Material: **References 3 through** Gasoline and diesel in soil and groundwater 8 Release #1 Date: References 3 through Prior to 1992 8 Former USTs and former fuel dispenser islands: Release #1 Source: References 3 through Three 10,000-gallon gasoline USTs 8 References 3 through Samples collected from the August 2023 investigation conducted by Roux indicated detectable concentrations of TPHg and TPHd. #1 Description: 8 Releases #2 Material: VOCs in soil gas and groundwater **References 3 through** 8 Release #2 Date: References 3 through Prior to October 1991 8 Release #2 Source: 8,000-gallon mineral spirits/1,1,1-TCA UST References 3 through 8 References 3 through #2 Description: amples collected from the August 2023 investigation conducted by Roux indicated detectable concentrations of VOCs 8 Releases #3 Material: **References 3 through** Dissolved metals in soil and groundwater 8 Release #3 Date: References 3 through Unknown 8 Release #3 Source: Historical industrial use of the Site as a foundry for the manufacture of cast pipe and fittings, and naturally occurring metals References 3 through 8 **References 3 through** #3 Description: amples collected from the August 2023 investigation conducted by Roux indicated detectable concentrations of metals 8

Sec No Section Name Details

References

Additional groundwater and soil vapor sampling is proposed in the Data Gap Investigation Work Plan
Additional groundwater and soil vapor sampling is proposed in the Data Gap Investigation Work Plan

	Section / Sub-	
Sec No	Section Name	Details

Constituents of Concern and Data Qua 4.2

					References	Data Gap	Method to Address Data Gap				
Objectives											
evaluation summary table for potential constituents of concern (PCOCs) has been pr	epared:			Yes		No					
a quality objectives (DQO) been clearly identified and reported for each PCOC and p , sample collection, handling methods, and analytical methods; laboratory quality a licate sampling schedule, leak check testing]; Laboratory reporting objectives; Repo orting])	ssurance and quali rting objectives [e.	ity control [QAQC] crite g. reported precision, 1		Yes	Tables 1 through 13; References 7 and 8	No					
a that does not meet data quality objectives is denoted as indefensible in summary				No	41	No					
a that does not meet DQOs is not relied upon for the delineation or risk evaluation p	portions of this SCN	M:		NA	┛ _┣ ────	No					
		PCOCs have been eva	luated in the followin Soil Vapor	-]						
Potential Chemicals of Concern that drive risk and/or closure (PCOCs)	Soil	Groundwater	Surface Water								
TPH-g	Yes	Yes	Yes	Unevaluated		Yes	More soil borings will be advanced for soil and soil vapor sampling.				
TPH-d	Yes	Yes	Yes	Unevaluated		Yes	More soil borings will be advanced for soil and soil vapor sampling.				
TPH-mo	Yes		Yes	Unevaluated		Yes	More soil borings will be advanced for soil and soil vapor sampling.				
Benzene	Yes	Yes	Yes	Unevaluated		Yes	More soil borings will be advanced for soil and soil vapor samp				
Toluene	Yes	Yes	Yes	Unevaluated		Yes	More soil borings will be advanced for soil and soil vapor sampling.				
Ethylbenzene	Yes	Yes	Yes	Unevaluated		Yes	More soil borings will be advanced for soil and soil vapor sampling.				
Xylene	Yes	Yes	Yes	Unevaluated		Yes	More soil borings will be advanced for soil and soil vapor sampling.				
МТВЕ	Yes	Yes	Yes	Unevaluated		Yes	More soil borings will be advanced for soil and soil vapor sampling.				
PCE	Yes	Yes	Yes	Unevaluated	Tables 1 through 13;	Yes	More soil borings will be advanced for soil and soil vapor sampling.				
TCE	Yes	Yes	Yes	Unevaluated	References 7 and 8	Yes	More soil borings will be advanced for soil and soil vapor sampling.				
1,1-DCA	Yes	Yes	Yes	Unevaluated		Yes	More soil borings will be advanced for soil and soil vapor sampling.				
1,1-DCE	Yes	Yes	Yes	Unevaluated		Yes	More soil borings will be advanced for soil and soil vapor sampling.				
1,2-DCA	Yes	Yes	Yes	Unevaluated		Yes	More soil borings will be advanced for soil and soil vapor sampling.				
1,1,1-TCA	Yes	Yes	Yes	Unevaluated		Yes	More soil borings will be advanced for soil and soil vapor sampling.				
Naphthalene	Yes	Yes	Yes	Unevaluated		Yes	More soil borings will be advanced for soil and soil vapor sampling.				
Vinyl chloride	Yes	Yes	Yes	Unevaluated		Yes	More soil borings will be advanced for soil, soil vapor and groundwar sampling.				
PCBs	No	Yes	No	Unevaluated		Yes	More soil borings will be advanced for soil sampling.				
Title 22 Metals	Yes	Yes	No	Unevaluated		Yes	More soil borings will be advanced for soil sampling.				
Lead	Yes	Yes	No	Unevaluated	11	Yes	More soil borings will be advanced for soil sampling.				

References Data Gap

No	
No	
No	
No	

Section / Sub-Sec No Section Name Details

n Name Details						References	Data Gap	Method to Address Data Gap
ribution and Transport of Potentia	al Contaminants of Concern:Soil							
	Comprehensive Soil Analytical Table(s) and Figure(s) are provided for all PCOCs:	Yes				Tables 4 F 12 and	Yes	More soil borings will be advanced for soil sampling.
	Soil analytical data used for delineation or risk assessment meets DQOs:	No				Tables 4, 5, 12, and	No	
	Laterally delineated PCOCs:	No				13; Attachments D	Yes	More soil borings will be advanced for soil sampling.
	Laterally undelineated PCOCs:	Yes				through F;	No	
	Vertically delineated PCOCs:	Yes				References 7 and 8;	No	
	Vertically undelineated PCOCs:	No				Figure A-4	No	
		Surface Soil		Subsurface Soil		-		
		<u>< 5 ft bgs</u>	Sample ID/	5 - 20 ft bgs	Sample ID /			
	Maximum concentration reported in untreated/unremoved so		Depth (ft bgs)	-	• •			
				(mg/kg)	Depth (ft bgs)			
	ТРН-	U	E-4/3	150	MW-13/6	41		More soil borings will be advanced for soil sampling.
	TPH-		MW-13/3	3200	MW-13/6		Yes	More soil borings will be advanced for soil sampling.
	Benzen		E-4/3	ND	Various locations	Tables 4, 5, 12, and	Yes	More soil borings will be advanced for soil sampling.
	PC		E-4/3	ND	Various locations	13; References 7, 8,	Yes	More soil borings will be advanced for soil sampling.
	TC	CE 0.328	E-4/3	ND	Various locations	and 10; Figure A-4;	Yes	More soil borings will be advanced for soil sampling.
	Vinyl chloride	le ND	Various locations	0.0128	E-2/11	Attachments D through F	Yes	More soil borings will be advanced for soil sampling.
	Arsen	ic 65	MW-13/3	16	MW-12/25		Yes	More soil borings will be advanced for soil sampling.
	Lea	ad 630	MW-16/5	17	MW-12/25		Yes	More soil borings will be advanced for soil sampling.
			Direct Friday of	Indirect Evidence of				
NAPL PCOCs	Location(s) and weathering	Source	of NAPL	NAPL	r Mobility			
NAPL PLOUS		Source	OTNAPL	NAPL	Ινιοριπτγ			
Maria		NIA	N1.0	NIA	-		N	
None	NA	NA	NA	NA	NA]	No	
		NA	NA	NA	-		No	
Preferential pathways capab	NA Dle of intercepting and conveying mobile NAPL are present:		NA	NA	-	Tables 4, 5, 12, and		
Preferential pathways capab	NA		NA	NA	-	Tables 4, 5, 12, and 13; References 7 and 8		
Preferential pathways capab Preferential pathways within phase PCOCs are present: Preferential pathways locate	NA ble of intercepting and conveying mobile NAPL are present: In the extents of soil contamination that are capable of intercepting and conveying vapor and beneath the extents of soil contamination that are capable of intercepting and	No	NA	NA	-	13; References 7 and	No	
Preferential pathways capat Preferential pathways within phase PCOCs are present:	NA ble of intercepting and conveying mobile NAPL are present: In the extents of soil contamination that are capable of intercepting and conveying vapor and beneath the extents of soil contamination that are capable of intercepting and	No	NA	NA	-	13; References 7 and	No	
Preferential pathways capab Preferential pathways within phase PCOCs are present: Preferential pathways locate conveying leachate are prese	NA ble of intercepting and conveying mobile NAPL are present: In the extents of soil contamination that are capable of intercepting and conveying vapor and beneath the extents of soil contamination that are capable of intercepting and	No	NA	NA	-	13; References 7 and	No	
Preferential pathways capab Preferential pathways within phase PCOCs are present: Preferential pathways locate	NA ble of intercepting and conveying mobile NAPL are present: In the extents of soil contamination that are capable of intercepting and conveying vapor and beneath the extents of soil contamination that are capable of intercepting and	No	NA	NA	-	13; References 7 and	No	

References Data Gap

Method to Address Data Gap

Section / Sub-

Sec No Section Name Details

4.4 Distribution and Transport of Potential Contaminants of Concern: Groundwater

l Contaminants of Concern: Groundwater							
Comprehensive groundwater analytical table(s)/figure(s) are provided for all PCOCs:	Yes					No	
	N					•/	
Groundwater analytical data used for delineation or risk assessment meets DQOs:	No					No	
Indicate PCOCs that are sufficiently delineated laterally:	TPH, VOCs, and me	etals				No	
Indicate PCOCs that are undelineated laterally:	None				Tables 2 and 2 7	No	
Indicate PCOCs that are sufficiently delineated vertically:	TPH, VOCs, and me	etals			Tables 2 and 3, 7	No	
Indicate PCOCs that are undelineated vertically:	None				though 11; References 7 and 8	No	
Sufficient groundwater data has been collected to demonstrate that the groundwater	No				References 7 and o	Yes	Quarterly groundwater monitoring events will be conducted.
plume is stable or decreasing in size:	NI / A						
	N/A					No	
Describe any observed patterns in groundwater concentrations (e.g., seasonal	N/A					Yes	Quarterly groundwater monitoring events will be conducted.
variations, effects of groundwater elevation, natural attenuation):							
Describe evidence to indicate that microbial communities capable of metabolizing aqueous phase PCOCs to a safe endpoint are present:	N/A					Yes	Quarterly groundwater monitoring events will be conducted.
מקטבטטא שוומאב ד נסנא נט מ אמוב בווטאטוווג מוב אובאבווג.							
Maximum concentration reported in stable groundwater for each water bearing zone	Water bearing						
(i.e., concentrations are in equilibrium and not undergoing rebound)	Zone	Sample ID	Sample Date	Concentration (µg/L)			
TPH-g	Shallow	MW-11	8/9/2023	1,100		Yes	Quarterly groundwater monitoring events will be conducted.
TPH-d	Shallow	E-6	3/25/2022	892 J		Yes	Quarterly groundwater monitoring events will be conducted.
TPH-mo	Shallow	E-6	3/25/2022	819 J		Yes	Quarterly groundwater monitoring events will be conducted.
Benzene	Shallow	Various Locations	8/9/2023	<0.5	-	Yes	Quarterly groundwater monitoring events will be conducted.
Toluene	Shallow	Various Locations	8/9/2023	<0.5		Yes	Quarterly groundwater monitoring events will be conducted.
Ethylbenzene	Shallow	MW-11	8/9/2023	2.3		Yes	Quarterly groundwater monitoring events will be conducted.
ХуІеле	Shallow	Various Locations	8/9/2023	<0.5		Yes	Quarterly groundwater monitoring events will be conducted.
МТВЕ	Shallow	MW-15	8/9/2023	3.5		Yes	Quarterly groundwater monitoring events will be conducted.
PCE	Shallow	MW-17	8/9/2023	0.8	Tables 2 and 3, 7	Yes	Quarterly groundwater monitoring events will be conducted.
TCE	Shallow	MW-17	8/9/2023	1.0	though 11;	Yes	Quarterly groundwater monitoring events will be conducted.
1,1-DCA	Shallow	E-2	3/25/2022	3.63	References 7, 8, and	Yes	Quarterly groundwater monitoring events will be conducted.
1,1-DCE	Shallow	MW-12	8/9/2023	200	10; Figures A-4	Yes	Quarterly groundwater monitoring events will be conducted.
1,2-DCA	Shallow	MW-11	8/9/2023	0.8		Yes	Quarterly groundwater monitoring events will be conducted.
1,1,1-TCA	Shallow	Various Locations	8/9/2023	<0.5		Yes	Quarterly groundwater monitoring events will be conducted.
Naphthalene	Shallow	MW-11	8/9/2023	2.8		Yes	Quarterly groundwater monitoring events will be conducted.
Vinyl chloride	Shallow	E-2	3/25/2022	8.87		Yes	Quarterly groundwater monitoring events will be conducted.
Arsenic	Shallow	MW-17	8/9/2023	39		Yes	Quarterly groundwater monitoring events will be conducted.
Barium	Shallow	MW-17	8/9/2023	1600		Yes	Quarterly groundwater monitoring events will be conducted.
Chromium	Shallow	MW-17	8/9/2023	440		Yes	Quarterly groundwater monitoring events will be conducted.
Cobalt	Shallow	MW-17	8/9/2023	120		Yes	Quarterly groundwater monitoring events will be conducted.
Lead	Shallow	MW-17	8/9/2023	88		Yes	Quarterly groundwater monitoring events will be conducted.
Nickel	Shallow	MW-17	8/9/2023	460		Yes	Quarterly groundwater monitoring events will be conducted.

Data Gap

References

Section / Sub-Sec No Section Name Details

4.5

NAPL PCOCs

NA

References Direct Evidence Indirect Evidence of Location(s) and weathering Mobility Source of NAPL NAPL No NA NA NA NA Submerged (fully, partially, or seasonally) preferential pathways capable of intercepting and conveying free phase, No aqueous phase, or vapor phase PCOCs are present within the extents of the groundwater plume: Preferential pathways capable of intercepting and conveying vapor phase PCOCs are present above the extents of the ٧o volatile groundwater contamination plume: References 7 and 8 The lateral distribution of PCOCs in groundwater concurs with identified historic groundwater gradient direction: /es The vertical distribution of PCOCs in groundwater concurs with identified historic groundwater gradient direction: /es Distribution and Transport of Potential Contaminants of Concern: Soil Vapor Vapor probe network adequacy: nadequate Preferential pathways evaluation complete: N/A Comprehensive soil vapor analytical table(s) and figure(s) are provided for all PCOCs: /es Soil Vapor analytical data used for delineation or risk assessment meets DQOs: JO Indicate PCOCs that are sufficiently delineated laterally: PCE, TCE, benzene, 1,1-DCA, 1,4-Dioxane, Naphthalene, chloroform Indicate PCOCs that are undelineated laterally: None Table 1 and 6; Figure Indicate PCOCs that are sufficiently delineated vertically: PCE, TCE, benzene, 1,1-DCA, 1,4-Dioxane, Naphthalene A-4; References 7 and 8 Indicate PCOCs that are undelineated vertically: None Soil vapor plumes for PCOCs are spatially and temporally stable or decreasing in size: Jnknown Chemo-graphs for each soil vapor probe have been provided: Describe any observed patterns in soil vapor concentrations (e.g., seasonal variations, Jnknown effects of groundwater elevation, natural attenuation):

Jnknown

Not Applicable

Describe evidence to indicate that microbial communities capable of metabolizing

vapor phase PCOCs to a safe endpoint are present:

dentify the vapor intrusion scenario that is applicable for the Site:

Maximum concentration reported in soil vapor	Soil Vapor	Sample ID/Depth (ft bgs)	Sample Date	Concentration (µg/m3)			
TPH-g	•	E-4/4	3/28/2022	820,000 J		No	
Benzene	Active	E-4/4	3/28/2022	11,000		No	
PCE	Passive	PSG-25	7/25/2023	1,170	Table 1 and 6; Figure A-4; References 7, 8,	Yes	Step-out samples will be collected.
TCE	Passive	PSG-62	7/25/2023	3,920			Step-out samples will be collected.
1,1-DCA	Passive	PSG-22	7/26/2023	336		No	
Chloroform	Active	E-2/5	3/28/2022	21	and 10	No	
Ethylbenezene	Active	E-4/4	3/28/2022	2,600		No	
1,4-Dioxane	Passive	PSG-59	7/25/2023	110		No	
Vinyl chloride	Active	E-4/4	3/28/2022	63		No	
Naphthalene	Passive	PSG-11	7/26/2023	188		No	

Nie	
No	
No	
No	
No	
No	

-	
Yes	Active soil gas samples and stepout passive soil gas samples will be collected
No	

Section / Sub-Sec No Section Name Details

4.6

Section Name Details					References	Data Gap	Method to Address Data Gap							
Distribution of Potential Contaminants of Concern: Indoor Air														
Comprehensive indoor air analytical table(s) and figure(s) are provided for all PCOCs:	Comprehensive indoor air analytical table(s) and figure(s) are provided for all PCOCs: No													
Indoor air analytical data used to evaluate risk meets DQO:	No					No								
A hazardous materials survey has been completed for the Site and updated during eac indoor air sampling event:	h No					No								
Tenants and occupants have been provided with appropriate notification:	No					No								
Indoor air has been evaluated during HVAC on and HVAC off conditions:	No					No								
PCOCs in indoor air are temporally stable:	No					No								
Sampling has been conducted to evaluate migration of subsurface contaminants into indoor air via identified preferential pathways:	No					No								
	Concentration													
Maximum concentration reported in Indoor A		Sample Date	Building ID	Sample ID										
N	A NA	NA	NA	NA		No								

References Data Gap

Method to Address Data Gap

Section / Sub-

Sec NoSection NameDetails5Points of Exposure and Receptor

ptors								
		Distance (feet)		Description/Na	me			
	Water utility servicing the Site and Surrounding Properties		Ea	ast Bay Municipal Util	ity District	Reference 11	No	
	Nearest <i>known</i> water supply well:	NA	of the Site. Well r	within 1/4-mile (1,320 feet) est water supply wells are th of the Site.	References 4 and 9	No		
	Nearest <i>potential</i> water supply well, unknown if consturction ever occurred:	NA		NA			No	
	Nearest surface water body:	4,224		San Leandro Ba	ау	Reference 4	No	
	Nearest discharge to surface water body (e.g., storm drain, creek):	0		Elmhurst Cree	k	Reference 4	No	
	Identified sensitive receptors or conditions atypical of the assumptions of standard exposure scenarios:	NA				No		
				Construction/				
	Potentially complete exposure pathways	Residential	Occupational	Excavation	Ecological Receptors			
Surface Soils	Inhalation	Complete	Complete	Complete	Incomplete			
(i.e. 0-5 feet below	Ingestion	Complete	Complete	Complete	Incomplete	References 7 and 8	No	
ground surface)	Dermal Contact	Complete	Complete	Incomplete				

References

Data Gap

Method to Address Data Gap

Appendix A TABLES

- 1. Summary of Soil Vapor Analytical Results (H&A, 2022)
- 2. Summary of Groundwater Analytical Results Metals (H&A, 2022)
- 3. Summary of Groundwater Analytical Results Organics (H&A, 2022)
- 4. Summary of Soil Analytical Results Metals (H&A, 2022)
- 5. Summary of Soil Analytical Results Organics (H&A, 2022)
- 6. Summary of Passive Soil Gas Analytical Results (Roux, 2023)
- 7. Summary of Groundwater Analytical Results Metals (Roux, 2023)
- 8. Summary of Groundwater Analytical Results Organics (Roux, 2023)
- 9. Summary of Groundwater Analytical Results PAHs (Roux, 2023)
- 10. Summary of Groundwater Analytical Results Pesticides (Roux, 2023)
- 11. Summary of Groundwater Analytical Results PCBs (Roux 2023)
- 12. Summary of Soil Analytical Results Metals (Roux, 2023)
- 13. Summary of Soil Analytical Results Organics (Roux, 2023)

Table A-1 Summary of Soil Vapor Analytical Results (H&A, 2022) AB&I Redevelopment 7825 San Leandro Street, Oakland, California

					VO	Cs		
Sample ID	Depth (feet Sample ID bgs) Commercial/Indus		<mark>Ш</mark> диg/m ³	alloroethane گالی پیاری	Benzene †d/m ₃	Toluene الم	hdlbenzene یا ساری	m,p-xylene ماله شركي
Co	mmercial/Indu	strial ESLs ¹	6.7E+01	1.5E+06	1.4E+01	4.4E+04	1.6E+02	1.5E+04
E-2 (Primary)	5	3/28/2022	< 6.8	< 11	< 3.2	< 3.8	< 4.4	< 4.4
E-2 (Secondary)	5	3/28/2022	< 7	< 11	< 3.3	< 3.9	< 4.5	< 4.5
E-4 (Primary)	4	3/28/2022	< 130	< 200	11000	< 73	2600	1000

Notes:

PCE = tetrachloroethene

µg/m³ - micrograms per cubic meter

bgs = below ground surface

<X- Not detected at or above laboratory reporting limit X

¹San Francisco Bay Regional Water Quality Control Board 2019. Environmental Screening Levels (ESLs): Subslab/Soil Gas Vapor Intrusion: Human Health Risk Levels (Table SG-1) Commercial/Industrial. January 2019 (Revision 2).

Bold text indicates a concentration detected above the laboratory reporting limit

Yellow highlighted concentrations indicate an exceedance of the Commercial/Industrial ESL for Vapor Intrusion Ris VOCs analyzed by USEPA Method TO-15 and ASTM D-1946.

USEPA = United States Environmental Protection Agency

Table A-2 Summary of Groundwater Analytical Results - Metals (H&A, 2022) AB&I Redevelopment 7825 San Leandro Street, Oakland, California

											Metals								
	Depth	Sample	, Antimony, Total	, Arsenic, Total	, Barium, Total	, Beryllium, Total	, Cadmium, Total	, Chromium, Total	, Cobalt, Total	, Copper, Total	, Lead, Total	, Mercury, Total	, Molybdenum, Total	, Nickel, Total	Selenium, Total	Silver, Total	, Thallium, Total	, Vanadium, Total	Zinc, Total
Sample ID	(feet bgs)	Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
	MCL	Priority List ¹	6.0E+00	1.0E+01	1.0E+03	4.0E+00	5.0E+00	5.0E+01	6.0E+00	1.0E+03	1.5E+01	2.0E+00	1.0E+02	1.0E+02	5.0E+01	1.0E+02	2.0E+00		5.0E+03
E-2	11.75	03/25/22	< 1.03	1.81 J	163	< 1.48	0.628 J	15.2 J	5.69 J	14.6	5.48	< 0.1	9.78 J	20.7	0.32 J	0.215 J	< 0.121	38.9 J	16.6 J
E-6	7.75	03/25/22	11	6.05	321	< 1.48	0.268 J	31.8 J	7.48 J	21.6	37.3	0.192 J	341	39.1	0.731 J	< 0.07	< 0.121	22.8 J	38.8

Notes:

-- = not established or not analyzed

µg/L = micrograms per liter

<X = Not detected at or above laboratory reporting limit X.

Bold text indicates a concentration detected above the laboratory reporting limit.

Yellow highlighted concentrations indicate an exceedance of the MCL Priority ESLs

J = estimated result

Metals analyzed by USEPA Method 6010B, 6020, and 7470A

USEPA = United States Environmental Protection Agency

bgs = below ground surface

¹San Francisco Bay Regional Water Quality Control Board 2019. Environmental Screening Levels (ESLs): Direct Exposure Human Health Risk Levels (Table GW-1) MCL Priority. January 2019 (Revision 2).

Table A-3 Summary of Groundwater Analytical Results - Organics (H&A, 2022) AB&I Redevelopment 7825 San Leandro Street, Oakland, California

					TPH								VC)Cs					
	Depth		TPH-Gasoline (TPH-g)	, TPH-Diesel (TPH-d)	TPH-d, Silica Gel	, TPH- Motor Oil (TPH-mo)	TPH-mo, Silica Gel	1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2,3-Trimethylbenzene	1,2-Dichlorobenzene	2-Butanone (Methyl Ethyl : Ketone)	Acetone	Benzene	Chloroethane	cis-1,2-Dichloroethene	Ethylbenzene	lsopropylbenzene (Cumene)
Sample ID	(feet bgs)	Sample Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	μg/L	µg/L	μg/L	µg/L	µg/L
	Λ	ICL Priority List ¹	7.6E+02	2.0E+02				2.0E+02	5.0E+00	6.0E+00		1.0E+02		1.4E+04	1.0E+00	2.1E+04	6.0E+00	3.0E+01	
	Commercial/	/Industrial ESLs ²						6.3E+03	3.3E+01	2.8E+02		1.1E+04		9.7E+07	1.8E+00	9.7E+04	2.1E+02	1.5E+01	
E-2	11.75	03/25/22	146 J	236 J	< 36.6 J	111 J	< 36.6 J	< 0.149	3.63	195	< 0.104	< 0.107	< 1.19	< 11.3	< 0.0941	< 0.192	2.36	< 0.137	< 0.105
E-6	7.75	03/25/22	< 100 J	892 J	55.4 J	819 J	43.7 J	< 0.149	0.325 J	< 0.188	0.407 J	< 0.107	5.01 J	25.2 J	0.463 J	< 0.192	0.215 J	0.147 J	0.125 J

Notes:

VOC = Volatile Organic Compund

TPH = Total Petroleum Hydrocarbons

MCLs = California Maximum Contaminant Level

ESLs = Environmental Screening Levels

-- = not established

<X = not detected at or above laboratory reporting limit X.

NA = Analyte not sampled for

μg/L = micrograms per liter

Bold text indicates a concentration detected above the laboratory reporting limit.

Gray highlighted concentrations indicate the laboratory reporting limit is above the MCL Priority ESLs

Yellow highlighted concentrations indicate an exceedance of the MCL Priority ESLs

Green highlighted concentrations indicate an exceedance of both the MCL Priority ESLs and the GW Vapor Intrusion Commercial/Industrial ESLs

VOCs analyzed by Environmental Protection Agency (USEPA) Method 8260B.

TPHg, TPH-d, and TPH-mo analyzed by EPA Method 8015B.

¹San Francisco Bay Regional Water Quality Control Board 2019. *Environmental Screening Levels (ESLs): Direct Exposure Human Health Risk Levels (Table GW-1) MCL Priority*. January 2019 (Revision 2).

²San Francisco Bay Regional Water Quality Control Board 2019. *Environmental Screening Levels (ESLs): Groundwater Vapor Intrusion Human Health Risk Levels (Table GW-3) Commercial/Industrial.* January 2019 (Revision 2).

Table A-3 Summary of Groundwater Analytical Results - Organics (H&A, 2022) AB&I Redevelopment 7825 San Leandro Street, Oakland, California

				VOCs					
	Depth		{ Methyl Tert Butyl Ether ■ (MTBE)	Naphthalene	Tert Butyl Alcohol (TBA)	Toluene	Trichloroethene (TCE)	Vinyl Chloride	Xylenes, Total
Sample ID	(feet bgs)	Sample Date	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L
	Ι	MCL Priority List ¹	5.0E+00	1.7E-01		4.0E+01	5.0E+00	5.0E-01	2.0E+01
	Commercial	/Industrial ESLs ²	2.0E+03	2.0E+01		4.9E+03	7.5E+00	1.4E-01	1.6E+03
E-2	11.75	03/25/22	0.27 J	< 1	NA	< 0.278	< 0.19	8.87	< 0.174
E-6	7.75	03/25/22	< 0.101	2.61 J	NA	< 0.278	< 0.19	< 0.234	0.224 J

Notes:

VOC = Volatile Organic Compund

TPH = Total Petroleum Hydrocarbons

MCLs = California Maximum Contaminant Level

ESLs = Environmental Screening Levels

-- = not established

<X = not detected at or above laboratory reporting limit X.

NA = Analyte not sampled for

 μ g/L = micrograms per liter

Bold text indicates a concentration detected above the laboratory reporting limit.

Gray highlighted concentrations indicate the laboratory reporting limit is above the MCL Priority ESLs

Yellow highlighted concentrations indicate an exceedance of the MCL Priority ESLs

Green highlighted concentrations indicate an exceedance of both the MCL Priority ESLs and the GW Vapor Intrusion Commercial/Industrial ESLs

VOCs analyzed by Environmental Protection Agency (USEPA) Method 8260B.

TPHg, TPH-d, and TPH-mo analyzed by EPA Method 8015B.

¹San Francisco Bay Regional Water Quality Control Board 2019. Environmental Screening Levels (ESLs): Direct Exposure Human Health Risk Levels (Table GW-1) MCL Priority. January 2019 (Revision 2).

²San Francisco Bay Regional Water Quality Control Board 2019. Environmental Screening Levels (ESLs): Groundwater Vapor Intrusion Human Health Risk Levels (Table GW-3) Commercial/Industrial. January 2019 (Revision 2).

Table A-4 Summary of Soil Analytical Results - Metals (H&A, 2022) AB&I Redevelopment 7825 San Leandro Street, Oakland, California

Sample ID	Depth (ft bgs)	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	Cobalt mg/kg	cobber mg/kg	read mg/kg	mg/kg	molybdenum mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ziuc mg/kg
Comi	mercial/Indu	ustrial ESLs ¹	1.6E+02	1.1E+01	2.2E+05	2.3E+02	1.1E+03		3.5E+02	4.7E+04	3.2E+02	1.9E+02	5.8E+03	1.1E+04	5.8E+03	5.8E+03	1.2E+01	5.8E+03	3.5E+05
E-2	6	03/25/22	2.27 J	3.74	321	1.05	< 0.0651	88.3	13.3	45.9	10.5	0.0569	0.199 J	68.2	< 1.06	< 0.176	< 0.545	93.7	71.7
E-2	11	03/25/22	2.37 J	5.57	269	0.562	0.287 J	63.3	21.4	42	8.69	0.0585	0.387 J	66.5	1.57 J	< 0.167	< 0.518	68.6	65.9
E-4	3	03/25/22	1.8 J	5.66	211	0.491	2.44	44.1	13	40	232	1.52	1.95	73.8	0.973 J	< 0.157	< 0.488	45.2	124
E-4	13	03/25/22	< 0.702	3.19	164	0.478	0.216 J	47.8	11.3	25.3	7.07	0.0696	< 0.141	81.4	< 0.986	< 0.164	< 0.508	34	53
E-5	0	03/25/22	6.6	7.33	211	0.256	1.64	40.5	9.31	56	219	0.304	8.74	33.8	< 0.951	< 0.158	< 0.490	41.2	295
E-5	3	03/25/22	1.25 J	5.75	131	0.271	1.03	31.3	7.35	65.7	85.2	0.145	0.912	38.2	1.56 J	< 0.159	< 0.494	32.4	352
E-6	2	03/25/22	2.16 J	2.91	210	0.732	0.519 J	84.9	8.36	85.4	38.3	0.156	17.8	105	2.81	0.807 J	< 0.476	53	60.6
E-6	5	03/25/22	1.1 J	1.38 J	347	0.72	0.374 J	59.9	18.2	46.2	10.2	0.143	< 0.145	67.1	1.44 J	< 0.169	< 0.524	52.2	78.4

Notes:

ESLs = Environmental Screening Levels

-- = not established

mg/kg = milligrams per kilogram

ft bgs = feet below ground surface

<X = Not detected at or above laboratory reporting limit X.

J = estimated result

Bold text indicates a concentration detected above the laboratory reporting limit.

Metals analyzed by United States Environmental Protection Agency (USEPA) Methods 6010B/7471A

¹San Francisco Bay Regional Water Quality Control Board 2019. Environmental Screening Levels (ESLs): Direct Exposure Human Health Risk Levels (Table S-1) Commercial/Industrial: Shallow Soil Exposure. January 2019 (Revision 2). ²Arsenic concentrations are compared to the accepted background concentration for the San Francisco Bay Region as presented in "Establishing Background Arsenic in Soil of The Urbanized San Francisco Bay Region" by Dylan Jacques Duverge, December 2011.

Table A-5Summary of Soil Analytical Results - Organics (H&A, 2022)AB&I Redevelopment7825 San Leandro Street, Oakland, California

					TPH									VOCs						
	Depth (ft	Sample	TPH-Gasoline	TPH-Diesel	TPH-Diesel, Silica Gel	TPH-Motor Oil	TPH-Motor Oil, Silica Gel	1,1-Dichloroethane	1,1-Dichloroethene	1,2,3-Trimethylbenzene	1,2,4-Trimethylbenzene	1,2-Dichlorobenzene	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2-Phenylbutane (sec-Butylbenzene)	Benzene	Chloroethane	cis-1,2-Dichloroethene	Cymene (p-lsopropyltoluene)
Sample ID	bgs)	Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Сог	mmercial/Indu	strial ESLs ¹	2.0E+03	1.2E+03		1.8E+05		1.6E+01	3.5E+02			9.4E+03			1.2E+01		1.4E+00	5.9E+04	8.5E+01	
E-2	6	03/25/22	< 1.55	< 1.01	< 1.01	10.9 J	10.6 J	< 0.000916	< 0.00113	< 0.00295	< 0.00295	< 0.000792	< 0.00373	< 0.00112	< 0.00131	< 0.00537	< 0.000871	< 0.00317		< 0.00475
E-2	11	03/25/22	< 1.40	0.971 J	1.18 J	8.33 J	7.62 J	< 0.000831	0.00623	< 0.00267	< 0.00267	< 0.000719	< 0.00339	< 0.00102			< 0.00079	< 0.00288		
E-4	3	03/25/22	580	482 J-	428	4580	4400	< 0.00618	< 0.00764	0.882	4.61	0.0158 J	1.66	< 0.00756	< 0.00882	1.37	3.85	< 0.0214	0.0473	0.462
E-4	13	03/25/22	262	41.7	40.4	148	157	< 0.000793	< 0.000979	0.046	0.0488	0.0176	0.118		0.00428 J	0.297	0.426	< 0.00275		
E-5	0	03/25/22	11.3	27.1	21.9	232	186	0.00432 J	< 0.00119	0.0412	0.0603	< 0.000834	0.0176	< 0.00118		0.00726 J	0.00324	< 0.00334		
E-5	3	03/25/22	1.51 J	6.22 J	3.84 J	73.5	51.7	0.00445	< 0.000952	0.00362 J	0.00401 J		< 0.00314	< 0.000943		< 0.00452	0.00122 J	< 0.00268	< 0.00115	
E-6	2	03/25/22	< 1.22	6.52	5.05	41.3	39.2	< 0.00072	< 0.000887	< 0.00231	< 0.00231	< 0.000623	< 0.00293	< 0.000879	< 0.00103	< 0.00423	0.00325	< 0.00249		< 0.00373
E-6	5	03/25/22	2.17 J	1.06 J	1.2 J	2.64 J	2.17 J	< 0.00107	< 0.00133	< 0.00345	< 0.00345	< 0.00093	< 0.00438	< 0.00131	< 0.00153	< 0.0063	< 0.00102	< 0.00372	< 0.00161	< 0.00558

Notes:

ESLs = Environmental Screening Levels

TPH = Total Petroleum Hydrocarbons

VOC = Volatile Organic Compound

-- = not established

J = estimated result

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

<X = Not detected at or above laboratory reporting limit X.

Bold text indicates a concentration detected above the laboratory reporting limit.

TPH analyzed by Environmental Protection Agency (USEPA) Method 8015/8015B.

VOCs analyzed by EPA Method 8260B.

¹San Francisco Bay Regional Water Quality Control Board 2019. Environmental Screening Levels (ESLs): Direct Exposure Human Health Risk Levels (Table S-1) Commercial/Industrial: Shallow Soil Exposure. January 2019 (Revision 2).

Table A-6 Summary of Passive Soil Gas Analytical Results- Organics (Roux, 2023) AB&I Redevelopment 7825 San Leandro Street, Oakland, California

			ТРН										VOCs								
Sample ID ¹	Sample Collection Start Date	Sample Collection End Date	baline μgasoline	hd/w ₃	ର୍ଘ Tetrachloroethene ଞୁ (PCE)	ର୍ଜ ଅନୁ Trichloroethene (TCE)	Benzene μg/m ³	죠 1,1-Dichloroethane ਤ _ਿ (1,1-DCA)	ਸੈਂ ਡ੍ਰੇ ₅	au/br «Vaphthalene	ର୍ଘ 1,1,1,2- ଅୁ Tetrachloroethane	avation (1,1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	ਲੋ ਡ੍ਰੇ ∞ 1,1,2-Trichloroethane	± 1,1,2- 3 ∞ (Freon 113)	ີ 3 3 4,1-Dichloroethene	b⊤ ∭ 2,3-Trichlorobenzene	∯ ∭ 2,3.Trichloropropane	ີ່ມີ ສຸງ ແລະ 2,4-Trichlorobenzene	ີ 3 3 3 3 3 3 3 3 3 3 3 4 7 4 7 1 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	av/br %_1,2-Dibromoethane	bf چ د1,2-Dichlorobenzene
-	mmercial/Indi	^	8.3E+04	3.7E+04	6.7E+01	1.0E+02	1.4E+01	2.6E+02	5.3E+01	1.2E+01	5.5E+01	1.5E+05	2.6E+01	μg/m° 	μg/m° 1.0E+04	μg/m 	4.4E+01	2.9E+02	μg/m° 	6.8E-01	2.9E+04
Trip 1			<387	<331	<1.11	<1.38	<2.16	<0.54	<1.11	<1.43	<1.11	<0.44	<1.38	<0.51	<1.38	<1.17	<0.61	<1.17	<1.38	<0.59	<0.61
PSG-01	07/24/23	08/08/23	<392	<335	<1.13	<1.40	<2.18	<0.54	<1.13	<1.45	<1.13	<0.44	<1.40	<0.52	<1.40	<1.19	<0.62	<1.19	<1.39	<0.59	<0.62
PSG-02	07/24/23	08/08/23	<392	887	<1.13	<1.40	5.67	< 0.54	<1.13	<1.45	<1.13	<0.44	<1.40	<0.52	<1.40	<1.19	<0.62	<1.19	1.59	< 0.59	<0.62
PSG-03	07/25/23	08/08/23	<416	959	<1.20	<1.49	3.8	< 0.58	<1.20	<1.53	<1.20	<0.47	<1.49	<0.55	<1.49	<1.26	<0.65	<1.26	<1.48	< 0.63	<0.65
PSG-04	07/25/23	08/08/23	<415	400	<1.20	<1.49	4.41	< 0.58	<1.20	<1.53	<1.20	< 0.47	<1.49	<0.55	<1.49	<1.26	<0.65	<1.26	<1.48	< 0.63	< 0.65
PSG-05	07/24/23	08/08/23	884	6,550	<1.14	<1.41	7.57	< 0.55	<1.14	1.84	<1.14	< 0.44	<1.41	<0.52	<1.41	<1.20	< 0.62	<1.20	4.6	< 0.60	< 0.62
PSG-06	07/24/23	08/08/23	4,120	26,000	<1.14	<1.41	15.3	<0.55	<1.14	4.65	<1.14	< 0.44	<1.41	<0.52	<1.41	<1.20	<0.62	<1.20	<1.41	<0.60	<0.62
PSG-07	07/24/23	08/08/23	<396	1,130	<1.14	<1.41	4.07	< 0.55	<1.14	<1.46	<1.14	< 0.44	<1.41	<0.52	<1.41	<1.20	<0.62	<1.20	<1.41	<0.60	<0.62
PSG-08	07/24/23	08/08/23	<396	873	<1.14	<1.42	6.07	2.79	<1.14	2.07	<1.14	<0.44	<1.42	<0.52	2.09	<1.20	<0.62	<1.20	1.72	<0.60	<0.62
PSG-09	07/26/23	08/09/23	<420	431	30.7	<1.50	<2.34	<0.58	<1.21	<1.55	<1.21	0.48	<1.50	<0.56	<1.50	<1.27	<0.66	<1.27	<1.49	<0.64	<0.66
PSG-10	07/26/23	08/09/23	657	1,990	427	33.5	4.25	<0.58	<1.21	5.53	<1.21	1.38	<1.50	<0.56	2.97	<1.27	<0.66	<1.27	<1.50	<0.64	<0.66
PSG-11	07/26/23	08/09/23	14,500	21,500	1.65	<1.50	15.4	<0.58	<1.21	188	<1.21	<0.47	<1.50	<0.56	<1.50	<1.27	<0.66	<1.27	<1.51	<0.64	<0.66
PSG-12	07/26/23	08/09/23	<415	789	<1.19	<1.48	<2.31	<0.58	<1.19	<1.53	<1.19	2.42	<1.48	<0.55	1.71	<1.25	<0.65	<1.25	<1.52	<0.63	<0.65
PSG-13	07/26/23	08/09/23	4,320	4,690	<1.19	<1.48	18.1	<0.58	<1.19	<1.53	<1.19	1.24	<1.48	<0.55	<1.48	<1.25	<0.65	<1.25	<1.53	<0.63	<0.65
PSG-14	07/24/23	08/08/23	<393	801	1.84	<1.40	4.77	<0.55	<1.13	<1.45	<1.13	<0.44	<1.40	<0.52	<1.40	<1.19	<0.62	<1.19	<1.54	<0.59	<0.62
PSG-15	07/24/23	08/08/23	<393	354	8.86	<1.40	2.28	<0.55	<1.13	<1.45	<1.13	<0.44	<1.40	<0.52	<1.40	<1.19	<0.62	<1.19	<1.55	<0.59	<0.62
PSG-15-Dup	07/24/23	08/08/23	<393	<336	5.91	<1.40	<2.19	<0.55	<1.13	<1.45	<1.13	<0.44	<1.40	<0.52	<1.40	<1.19	<0.62	<1.19	<1.56	<0.59	<0.62
PSG-16	07/26/23	08/09/23	<420	652	<1.21	<1.50	<2.34	<0.58	<1.21	<1.55	<1.21	<0.47	<1.50	<0.56	<1.50	<1.27	<0.66	<1.27	<1.57	<0.64	<0.66
PSG-17	07/26/23	08/09/23	<420	<359	7.27	<1.50	<2.34	<0.58	<1.21	<1.55	<1.21	0.5	<1.50	<0.56	<1.50	<1.27	<0.66	<1.27	<1.58	<0.64	<0.66
PSG-18	07/24/23	08/08/23	<396	936	<1.14	<1.41	5.09	<0.55	<1.14	<1.46	<1.14	<0.44	<1.41	<0.52	<1.41	<1.20	<0.62	<1.20	<1.59	<0.60	<0.62
PSG-19	07/24/23	08/08/23	<396	6,060	<1.14	<1.42	3.24	<0.55	<1.14	2.35	<1.14	<0.44	<1.42	<0.52	<1.42	<1.20	<0.62	<1.20	<1.60	<0.60	<0.62
PSG-20	07/25/23	08/08/23	565	3,350	<1.20	<1.49	6	<0.58	<1.20	<1.53	<1.20	<0.47	<1.49	<0.55	<1.49	<1.26	<0.65	<1.26	<1.61	<0.63	<0.65
PSG-20-Dup	07/25/23	08/08/23	527	3,070	<1.20	<1.49	5.61	<0.58	<1.20	<1.53	<1.20	<0.47	<1.49	<0.55	<1.49	<1.26	<0.65	<1.26	<1.62	<0.63	<0.65
PSG-21	07/25/23	08/08/23	874	2,680	<1.20	<1.48	6.77	4.84	<1.20	1.76	<1.20	<0.47	<1.48	<0.55	<1.48	<1.26	<0.65	<1.26	<1.63	<0.63	<0.65
PSG-22	07/26/23	08/09/23	20,400	2,850	<1.21	<1.50	11.7	336	77.5	<1.55	<1.21	110	<1.50	<0.56	438	<1.27	<0.66	<1.27	<1.64	<0.64	<0.66
PSG-23	07/26/23	08/09/23	<420	<359	<1.21	<1.50	3.14	0.82	<1.21	<1.55	<1.21	0.73	<1.50	<0.56	2.14	<1.27	<0.66	<1.27	<1.65	<0.64	<0.66
PSG-24	07/26/23	08/09/23	<420	534	11	<1.50	3.72	<0.58	1.56	<1.55	<1.21	2.56	<1.50	<0.56	1.91	<1.27	<0.66	<1.27	<1.66	<0.64	<0.66
PSG-25	07/25/23	08/08/23	6,980	2,360	1,170	689	79	<0.58	<1.20	<1.54	<1.20	<0.47	<1.49	<0.55	4.31	<1.26	<0.66	<1.26	<1.67	< 0.63	<0.66
PSG-25-Dup	07/25/23	08/08/23	12,700	2,740	1,110	584	125	<0.58	<1.20	<1.54	<1.20	< 0.47	<1.49	<0.55	2.83	<1.26	<0.66	<1.26	<1.68	< 0.63	<0.66
PSG-26	07/25/23	08/08/23	3,940	1,210	5.16	<1.49	8.22	<0.58	<1.20	<1.54	<1.20	<0.47	<1.49	<0.55	<1.49	<1.26	<0.66	<1.26	<1.69	< 0.63	<0.66
PSG-27	07/24/23	08/08/23	<393	336	1.14	<1.41	<2.19	< 0.55	<1.13	<1.45	<1.13	< 0.44	<1.41	<0.52	<1.41	<1.19	< 0.62	<1.19	<1.70	< 0.59	< 0.62
PSG-28	07/25/23	08/08/23	<417	421	10	<1.49	2.72	< 0.58	<1.20	<1.54	<1.20	< 0.47	<1.49	< 0.55	<1.49	<1.26	< 0.66	<1.26	<1.71	< 0.63	< 0.66
PSG-29	07/25/23	08/08/23	2,670	1,860	<1.20	<1.49	<2.32	< 0.58	<1.20	3.97	<1.20	< 0.47	<1.49	< 0.55	<1.49	<1.26	< 0.66	<1.26	<1.72	< 0.63	< 0.66
PSG-30	07/25/23	08/09/23	<387	4,290	<1.11	<1.38	6.97	< 0.54	<1.11	1.75	<1.11	< 0.44	<1.38	< 0.51	<1.38	12.2	< 0.61	30.6	<1.73	< 0.59	< 0.61
PSG-31	07/25/23	08/08/23	4,800	30,300	<1.20	<1.49	23.9	9.34	<1.20	31.5	<1.20	< 0.47	<1.49	< 0.55	6.71	<1.26	< 0.65	<1.26	<1.74	< 0.63	< 0.65
PSG-32	07/25/23	08/08/23	2,090	5,700	<1.20	3.55	29	2.36	<1.20	3.97	<1.20	< 0.47	<1.49	< 0.55	4.23	<1.26	< 0.65	<1.26	<1.75	< 0.63	< 0.65
PSG-33	07/25/23	08/08/23	481	878	7.55	1.69	8.25	2.15	<1.20	<1.53	<1.20	< 0.47	<1.49	< 0.55	<1.49	<1.26	< 0.65	<1.26	<1.76	< 0.63	< 0.65
PSG-34	07/26/23	08/09/23	<420	<359	<1.21	<1.50	<2.34	4.23	<1.21	2.33	<1.21	7.48	<1.50	<0.56	14.5	<1.27	<0.66	<1.27	<1.77	<0.64	<0.66

											VC	Cs								
Sample ID ¹	Sample Collection Start Date	Sample Collection End Date	ຜິ/ ສ/ °	$\overset{(b)}{=}_{\infty}^{1,3,5-Trimethylbenzene}$	$\overset{\textrm{Bf}}{\overset{\textrm{J}}}{\overset{\textrm{J}}{\overset{\textrm{J}}{\overset{\textrm{J}}}{\overset{\textrm{J}}{\overset{\textrm{J}}{\overset{\textrm{J}}}{\overset{\textrm{J}}{\overset{\textrm{J}}}{\overset{\textrm{J}}{\overset{\textrm{J}}}{\overset{\textrm{J}}{\overset{\textrm{J}}{\overset{\textrm{J}}{\overset{\textrm{J}}}{\overset{\textrm{J}}{\overset{\textrm{J}}}{\overset{\textrm{J}}{\overset{\textrm{J}}}{\overset{\textrm{J}}}{\overset{\textrm{J}}{\overset{\textrm{J}}}{\overset{\textrm{J}}{\overset{\textrm{J}}}{\overset{\textrm{J}}}{\overset{\textrm{J}}}{\overset{J}{J$	ත් 	$\overset{\mathrm{bf}}{\overset{\mathrm{bf}}{_{\mathrm{s}}}}$ 2-Methylnaphthalene	b∯ ∭ ∞	by ^m d/m ³	m/bh broform	$\overset{\text{bf}}{\overset{\text{m}}{_{\scriptscriptstyle S}}}$ cis-1,2-Dichloroethene	bd ∭ ∭ 8	hdlbenzene ³ hadlbenzene	$\overset{\textrm{bf}}{\overset{\textrm{m}}{_{\mathrm{S}}}}$ Methylene chloride	$\stackrel{(a)}{=}_{\infty}$ Methyl-t-butyl ether $\stackrel{(a)}{=}_{\infty}$ (MTBE)	and the set of the se	b, p.m-Xylene	euning μg/m ³	$\stackrel{\mathrm{T}}{\cong}$ trans-1,2- $\stackrel{\mathrm{Z}}{\cong}$ Dichloroethene	$_{\rm s}^{\rm m/b\pi}$ Vinyl Chloride
Сог	mmercial/Indu	ustrial ESLs ²	1.6E+01			3.7E+01		6.8E+01	7.3E+03	1.8E+01	1.2E+03	1.6E+02		4.1E+02	1.6E+03			4.4E+04	1.2E+04	5.2E+00
Trip 1			<0.82	<1.38	<0.61	<0.61	<1.50	<1.06	<0.54	<1.31	<0.86	<1.34	<1.38	<1.31	<2.29	<1.30	<1.30	<2.86	<1.04	<0.56
PSG-01	07/24/23	08/08/23	<0.83	<1.39	<0.62	<0.62	<1.52	<1.08	<0.54	<1.32	<0.87	<1.36	<1.39	<1.32	<2.31	<1.31	<1.31	<2.89	<1.05	<0.57
PSG-02	07/24/23	08/08/23	<0.83	<1.39	<0.62	<0.62	<1.52	<1.08	<0.54	<1.32	<0.87	<1.36	<1.39	<1.32	<2.31	<1.32	2.35	3.96	<1.05	<0.57
PSG-03	07/25/23	08/08/23	<0.88	<1.48	<0.65	<0.65	<1.61	<1.14	<0.58	<1.40	<0.93	<1.44	<1.48	<1.40	<2.45	<1.39	<1.39	3.24	<1.11	<0.61
PSG-04	07/25/23	08/08/23	<0.88	<1.48	<0.65	<0.65	<1.61	<1.14	<0.58	<1.40	<0.92	<1.44	<1.48	<1.40	<2.45	<1.39	<1.39	<3.06	<1.11	<0.61
PSG-05	07/24/23	08/08/23	<0.83	1.49	<0.62	<0.62	2.06	<1.09	<0.55	<1.33	<0.88	<1.37	<1.41	<1.33	<2.33	1.41	2.38	6.37	<1.06	<0.58
PSG-06	07/24/23	08/08/23	< 0.83	<1.41	< 0.62	< 0.62	5.04	<1.09	< 0.55	<1.33	<0.88	<1.37	<1.41	<1.33	<2.33	<1.33	<1.33	6.47	<1.06	< 0.58
PSG-07	07/24/23	08/08/23	< 0.83	<1.41	< 0.62	< 0.62	<1.54	<1.09	0.86	<1.33	<0.88	<1.37	<1.41	<1.33	<2.33	1.73	4.5	<2.92	<1.06	< 0.58
PSG-08	07/24/23	08/08/23	< 0.83	<1.41	< 0.62	< 0.62	<1.54	<1.09	< 0.55	<1.33	<0.88	<1.37	<1.41	<1.33	<2.34	<1.33	<1.33	4.93	<1.06	< 0.58
PSG-09	07/26/23	08/09/23	<0.88	<1.49	< 0.66	< 0.66	<1.63	<1.15	< 0.58	1.65	< 0.93	<1.46	<1.49	<1.42	<2.48	<1.41	<1.41	<3.10	<1.13	< 0.61
PSG-10	07/26/23	08/09/23	<0.88	<1.49	< 0.66	< 0.66	3.75	<1.15	< 0.58	<1.42	< 0.94	<1.46	<1.49	<1.42	<2.48	<1.41	<1.41	<3.10	<1.13	< 0.61
PSG-11	07/26/23	08/09/23	< 0.88	8.78	< 0.66	< 0.66	1,080	<1.15	<0.58	<1.42	< 0.93	3.19	20.9	<1.42	<2.48	3.12	6.44	17.3	<1.13	< 0.61
PSG-12	07/26/23	08/09/23 08/09/23	< 0.87	<1.47	< 0.65	< 0.65	8.83	<1.14	<0.58	<1.40	< 0.92	5.94	<1.47	<1.40	<2.45	11.5	27.1	<3.06	<1.11	< 0.60
PSG-13 PSG-14	07/20/23	08/09/23	<0.87 <0.83	<1.47	<0.65 <0.62	<0.65 <0.62	4.63 2.46	<1.14 <1.08	<0.58 <0.55	<1.40 <1.32	<0.92 <0.87	3.79 <1.36	<1.47	<1.40 <1.32	<2.44 <2.32	3.56 2.47	6.76 4.9	18.6	<1.11	<0.60 <0.57
PSG-14 PSG-15	07/24/23	08/08/23	< 0.83	<1.40 <1.40	<0.62	<0.62	2.40 <1.53	<1.08	<0.55	<1.32	<0.87	1.56	<1.40 <1.40	<1.32	<2.32	3.62	4.9 7.99	5.1 <2.90	<1.05 <1.05	<0.57
PSG-15-Dup	07/24/23	08/08/23	<0.83	<1.40	<0.62	<0.62	<1.53	<1.08	<0.55	<1.32	<0.87	<1.36	<1.40	<1.32	<2.32	3.16	7.95	<2.90	<1.05	<0.57
PSG-16	07/26/23	08/09/23	<0.89	5.54	<0.66	<0.66	<1.63	<1.00	<0.58	<1.42	<0.94	6.84	<1.49	<1.42	<2.48	16.3	35.7	<3.10	<1.03	<0.61
PSG-17	07/26/23	08/09/23	<0.89	<1.49	<0.66	<0.66	<1.63	<1.15	<0.58	<1.42	<0.94	<1.46	<1.49	<1.42	<2.48	<1.41	1.59	<3.10	<1.13	<0.61
PSG-18	07/24/23	08/08/23	<0.83	<1.41	<0.62	< 0.62	2.42	<1.09	<0.55	<1.33	<0.88	<1.37	<1.41	<1.33	<2.33	<1.33	<1.33	<2.92	<1.06	<0.58
PSG-19	07/24/23	08/08/23	< 0.83	1.71	<0.62	< 0.62	2.98	<1.09	<0.55	<1.33	< 0.88	<1.37	<1.41	<1.33	<2.33	<1.33	<1.33	<2.92	<1.06	<0.58
PSG-20	07/25/23	08/08/23	<0.88	<1.48	<0.65	< 0.65	<1.61	<1.14	<0.58	<1.40	< 0.92	<1.44	<1.48	<1.40	<2.45	<1.39	<1.39	<3.06	<1.11	< 0.61
PSG-20-Dup	07/25/23	08/08/23	<0.88	<1.48	<0.65	<0.65	<1.61	<1.14	<0.58	<1.40	< 0.92	<1.44	<1.48	<1.40	<2.45	<1.39	<1.39	<3.06	<1.11	< 0.61
PSG-21	07/25/23	08/08/23	<0.88	<1.48	<0.65	<0.65	2.98	<1.14	< 0.58	<1.40	< 0.92	<1.44	<1.48	<1.40	<2.45	<1.39	<1.39	4.97	<1.11	< 0.60
PSG-22	07/26/23	08/09/23	< 0.89	<1.49	< 0.66	<0.66	<1.63	<1.15	<0.58	<1.42	1.05	1.9	<1.49	<1.42	<2.48	1.46	2.58	10.1	<1.13	2.26
PSG-23	07/26/23	08/09/23	<0.89	<1.49	<0.66	<0.66	<1.63	<1.15	<0.58	<1.42	<0.94	<1.46	<1.49	<1.42	<2.48	<1.41	3.44	<3.10	<1.13	<0.61
PSG-24	07/26/23	08/09/23	<0.89	<1.49	<0.66	<0.66	<1.63	<1.15	<0.58	<1.42	<0.94	<1.46	<1.49	<1.42	<2.48	<1.41	2.5	<3.10	<1.13	<0.61
PSG-25	07/25/23	08/08/23	<0.88	2.02	<0.66	<0.66	<1.62	<1.15	<0.58	<1.41	14	9.38	2.94	<1.41	<2.47	7.74	13.6	42.2	3.51	<0.61
PSG-25-Dup	07/25/23	08/08/23	<0.88	1.74	<0.66	<0.66	<1.62	<1.15	<0.58	<1.41	8.93	8.12	2.33	<1.41	<2.47	4.91	10	52.4	1.96	<0.61
PSG-26	07/25/23	08/08/23	<0.88	2.39	<0.66	<0.66	1.63	<1.15	<0.58	<1.41	<0.93	4.03	<1.49	<1.41	<2.47	6.5	10.1	3.48	<1.12	<0.61
PSG-27	07/24/23	08/08/23	<0.83	2.66	<0.62	<0.62	<1.53	<1.08	<0.55	<1.33	<0.88	<1.36	<1.40	<1.33	<2.32	1.91	3.83	2.98	<1.05	<0.57
PSG-28	07/25/23	08/08/23	<0.88	2.23	<0.66	<0.66	<1.62	<1.14	<0.58	<1.41	<0.93	<1.45	1.52	<1.41	<2.46	<1.40	<1.40	<3.08	<1.12	<0.61
PSG-29	07/25/23	08/08/23	<0.88	44.4	<0.66	<0.66	<1.62	<1.14	<0.58	<1.41	<0.93	<1.45	35.1	<1.41	<2.46	5.19	10.3	6.41	<1.12	<0.61
PSG-30	07/25/23	08/09/23	<0.82	<1.38	<0.61	<0.61	1.99	<1.06	<0.54	<1.31	<0.86	<1.34	<1.38	<1.31	<2.29	<1.30	<1.30	3.77	<1.04	<0.56
PSG-31	07/25/23	08/08/23	<0.88	<1.48	<0.65	<0.65	52.4	<1.14	<0.58	<1.40	<0.93	2.15	<1.48	<1.40	4.74	3.4	3.53	18.8	<1.12	0.9
PSG-32	07/25/23	08/08/23	<0.88	<1.48	<0.65	<0.65	2.09	<1.14	<0.58	<1.40	25.3	<1.44	7.7	<1.40	2.72	1.9	3.28	7.56	7.76	0.73
PSG-33	07/25/23	08/08/23	<0.88	1.77	<0.65	<0.65	<1.61	<1.14	<0.58	<1.40	<0.93	<1.44	<1.48	<1.40	3.63	<1.39	1.88	4.62	<1.11	<0.61
PSG-34	07/26/23	08/09/23	<0.88	<1.49	<0.66	<0.66	<1.63	<1.15	<0.58	<1.42	<0.93	2.9	<1.49	<1.42	<2.48	6.12	15.8	<3.10	<1.13	1.07

	07/06/00	00/00/00	F 070	2.050	447	0.44	40.7	<0 E 0	-1.01	0.70	-1.01	40.0	-1 50	<0 FC	<1 E0	<i>c</i> 1 07	<0.00	<i>c</i> 1 07	<1 70	-0.00	<0.00
PSG-35	07/26/23	08/09/23	5,970	3,950	14.7	3.11	16.7	<0.58	<1.21	2.79	<1.21	13.9	<1.50	< 0.56	<1.50	<1.27	< 0.66	<1.27	<1.78	< 0.63	< 0.66
PSG-35-Dup	07/26/23	08/09/23	4,990	3,170	7.68	3.42	14.9	< 0.58	<1.21	2.75	<1.21	9.37	<1.50	< 0.56	2.28	<1.27	< 0.66	<1.27	<1.79	< 0.63	< 0.66
PSG-36	07/26/23	08/09/23	13,000	4,660	13.8	36.4	38	<0.58	<1.21	6.81	<1.21	<0.47	<1.50	< 0.56	20.3	2.18	<0.66	<1.27	<1.80	< 0.64	1.52
PSG-37	07/25/23	08/08/23	427	613	<1.20	<1.50	6.51	0.86	<1.20	<1.54	<1.20	0.98	<1.50	<0.56	1.57	<1.27	<0.66	<1.27	<1.81	<0.63	<0.66
PSG-38	07/25/23	08/08/23	1,900	3,550	<1.20	<1.49	10.6	<0.58	<1.20	2.04	<1.20	0.81	<1.49	<0.55	<1.49	<1.26	<0.66	<1.26	<1.82	<0.63	<0.66
PSG-39	07/24/23	08/08/23	<393	<336	<1.13	<1.41	7.85	<0.55	<1.13	<1.45	<1.13	<0.44	<1.41	<0.52	<1.41	<1.19	<0.62	<1.19	<1.83	<0.60	<0.62
PSG-40	07/26/23	08/09/23	<420	<359	<1.21	1.62	<2.34	<0.58	<1.21	<1.55	<1.21	<0.47	<1.50	<0.56	<1.50	<1.27	<0.66	<1.27	<1.84	<0.64	<0.66
PSG-41	07/26/23	08/09/23	<420	<359	<1.21	915	<2.34	<0.58	<1.21	<1.55	<1.21	<0.47	<1.50	<0.56	3.88	<1.27	<0.66	<1.27	<1.85	<0.64	<0.66
PSG-42	07/26/23	08/09/23	<420	<359	32	14.6	<2.34	<0.58	<1.21	<1.55	<1.21	1.57	<1.50	<0.56	<1.50	<1.27	<0.66	<1.27	<1.86	<0.64	<0.66
PSG-43	07/26/23	08/09/23	<420	<359	<1.21	<1.50	<2.34	<0.58	<1.21	<1.55	<1.21	<0.47	<1.50	<0.56	<1.50	<1.27	<0.66	<1.27	<1.87	<0.64	<0.66
PSG-43-Dup	07/26/23	08/09/23	<420	<359	<1.21	<1.50	<2.34	<0.58	<1.21	<1.55	<1.21	<0.47	<1.50	<0.56	<1.50	<1.27	<0.66	<1.27	<1.88	<0.64	<0.66
PSG-44	07/25/23	08/08/23	<415	855	<1.19	<1.48	3.57	<0.58	<1.19	<1.53	<1.19	<0.47	<1.48	<0.55	<1.48	<1.26	<0.65	<1.26	<1.89	<0.63	<0.65
PSG-45	07/25/23	08/08/23	1,400	3,750	<1.20	<1.49	41.8	<0.58	<1.20	7.99	<1.20	<0.47	<1.49	<0.55	<1.49	<1.26	<0.65	<1.26	<1.90	<0.63	<0.65
PSG-46	07/25/23	08/08/23	4,300	5,280	<1.20	<1.49	42.2	<0.58	<1.20	3.53	<1.20	<0.47	<1.49	<0.55	<1.49	<1.26	<0.65	<1.26	<1.91	<0.63	<0.65
PSG-47	07/26/23	08/09/23	1,320	1,730	1.91	<1.50	4.11	<0.58	<1.21	<1.55	<1.21	<0.47	<1.50	<0.56	<1.50	<1.27	<0.66	<1.27	<1.92	<0.64	<0.66
PSG-48	07/26/23	08/09/23	1,690	1,010	1.52	<1.50	<2.34	<0.58	<1.21	<1.55	<1.21	0.62	<1.50	<0.56	<1.50	<1.27	<0.66	<1.27	<1.93	<0.64	<0.66
PSG-49	07/26/23	08/09/23	6,840	20,300	1.3	1.49	6.67	0.98	2.77	2.24	<1.20	<0.47	<1.49	<0.55	<1.49	<1.26	<0.66	<1.26	<1.94	<0.63	<0.66
PSG-50	07/26/23	08/09/23	<420	620	<1.21	<1.50	2.78	8.95	<1.21	<1.55	<1.21	128	<1.50	<0.56	161	<1.27	<0.66	<1.27	<1.95	<0.64	<0.66
PSG-51	07/25/23	08/08/23	<417	702	1.29	<1.49	3.11	1.31	<1.20	<1.54	<1.20	131	<1.49	<0.55	184	<1.26	<0.66	<1.26	<1.96	<0.63	<0.66
PSG-52	07/25/23	08/08/23	777	1,130	<1.20	1.52	22.9	19.3	<1.20	2.3	<1.20	<0.47	<1.49	<0.55	3.92	<1.26	<0.66	<1.26	<1.97	<0.63	<0.66
PSG-53	07/24/23	08/08/23	<395	651	<1.14	<1.41	26	2.63	<1.14	<1.46	<1.14	1.72	<1.41	<0.52	<1.41	<1.19	<0.62	<1.19	<1.98	<0.60	<0.62
PSG-54	07/24/23	08/08/23	<395	462	<1.14	<1.41	9.48	40.4	4.14	<1.46	<1.14	21.1	<1.41	<0.52	22.4	<1.19	<0.62	<1.19	<1.99	<0.60	<0.62
PSG-55	07/24/23	08/08/23	1,260	431	<1.14	<1.41	6.46	6.45	<1.14	<1.46	<1.14	<0.44	<1.41	<0.52	1.56	<1.19	<0.62	<1.19	<1.100	<0.60	<0.62
PSG-56	07/24/23	08/08/23	<395	582	<1.14	<1.41	4.78	<0.55	<1.14	<1.46	<1.14	<0.44	<1.41	<0.52	<1.41	<1.19	<0.62	<1.19	<1.101	<0.60	<0.62
PSG-57	07/25/23	08/08/23	3,630	902	<1.20	<1.49	22.4	17.2	<1.20	<1.53	<1.20	10.6	<1.49	<0.55	3.81	<1.26	<0.65	<1.26	<1.102	<0.63	<0.65
PSG-58	07/25/23	08/08/23	<416	643	<1.20	<1.49	17.4	1.09	<1.20	<1.53	<1.20	3.42	<1.49	<0.55	1.77	<1.26	<0.65	<1.26	<1.103	<0.63	<0.65
PSG-59	07/25/23	08/08/23	<416	1,090	8.53	<1.49	5.63	72.9	110	<1.53	<1.20	5.35	<1.49	<0.55	2.29	<1.26	<0.65	<1.26	<1.104	<0.63	<0.65
PSG-60	07/26/23	08/09/23	<418	<358	40.1	<1.50	7.11	<0.58	<1.20	<1.54	<1.20	<0.47	<1.50	<0.55	<1.50	<1.27	<0.66	<1.27	<1.105	<0.63	<0.66
PSG-61	07/25/23	08/08/23	4,390	3,460	<1.20	1.71	100	19.1	10.3	6.43	<1.20	3.19	<1.49	<0.55	3.18	<1.26	<0.65	<1.26	<1.106	<0.63	<0.65
PSG-61-Dup	07/25/23	08/08/23	3,800	3,230	<1.20	<1.49	78.7	17.8	9.44	6.27	<1.20	2.95	<1.49	<0.55	3.58	<1.26	<0.65	<1.26	<1.107	<0.63	<0.65
PSG-62	07/25/23	08/08/23	7,030	25,100	43	3,920	9.55	<0.58	<1.20	1.92	<1.20	<0.47	<1.49	<0.55	25.1	<1.26	<0.65	<1.26	<1.108	< 0.63	<0.65
PSG-63	07/25/23	08/08/23	<417	1,080	7.03	5.39	3.59	<0.58	2.64	<1.54	<1.20	1.15	<1.49	<0.55	2.73	<1.26	<0.66	<1.26	<1.109	< 0.63	<0.66
PSG-64	07/25/23	08/08/23	<417	758	1.28	<1.49	<2.32	< 0.58	<1.20	<1.54	<1.20	< 0.47	<1.49	<0.55	<1.49	<1.26	<0.66	<1.26	<1.110	< 0.63	< 0.66
PSG-64	07/25/23	08/08/23	<417	758	1.28	<1.49	<2.32	<0.58	<1.20	<1.54	<1.20	<0.47	<1.49	<0.55	<1.49	<1.26	<0.66	<1.26	<1.110	<0.63	<0.66

	07/00/00	00/00/00							0.50			<u> </u>	4.40		0.40				4.40	
PSG-35	07/26/23	08/09/23	<0.88	1.79	<0.66	<0.66	2.52	<1.15	<0.58	<1.41	< 0.93	2.71	<1.49	<1.41	<2.48	4.2	6.91	20.4	<1.13	< 0.61
PSG-35-Dup	07/26/23	08/09/23	<0.88	2.04	<0.66	<0.66	2.32	<1.15	< 0.58	<1.41	<0.93	2.09	<1.49	<1.41	<2.48	3.66	5.93	18.4	<1.13	<0.61
PSG-36	07/26/23	08/09/23	<0.89	25.3	<0.66	<0.66	8.58	<1.15	<0.58	<1.42	27	8.21	7.9	<1.42	<2.48	15	23	41.4	3.42	4.97
PSG-37	07/25/23	08/08/23	<0.88	<1.49	<0.66	<0.66	<1.62	<1.15	<0.58	<1.41	<0.93	2.06	<1.49	<1.41	<2.47	3.96	8.6	3.87	<1.12	<0.61
PSG-38	07/25/23	08/08/23	<0.88	4.8	<0.66	<0.66	2.04	<1.14	<0.58	<1.41	<0.93	<1.45	1.64	<1.41	<2.46	2.92	4.65	6.4	<1.12	<0.61
PSG-39	07/24/23	08/08/23	<0.83	<1.40	<0.62	<0.62	<1.53	<1.08	<0.55	<1.33	<0.88	1.73	<1.40	<1.33	<2.32	2.95	6.54	7.81	<1.06	<0.57
PSG-40	07/26/23	08/09/23	<0.89	<1.49	<0.66	<0.66	<1.63	<1.15	<0.58	<1.42	<0.94	<1.46	<1.49	<1.42	<2.48	<1.41	3.14	<3.10	<1.13	<0.61
PSG-41	07/26/23	08/09/23	<0.89	<1.49	<0.66	<0.66	<1.63	<1.15	<0.58	<1.42	2.42	<1.46	<1.49	<1.42	<2.48	<1.41	<1.41	<3.10	<1.13	<0.61
PSG-42	07/26/23	08/09/23	<0.89	<1.49	<0.66	<0.66	<1.63	<1.15	<0.58	<1.42	<0.94	3.31	<1.49	<1.42	<2.48	4.8	13.8	<3.10	<1.13	<0.61
PSG-43	07/26/23	08/09/23	<0.89	<1.49	<0.66	<0.66	<1.63	<1.15	<0.58	<1.42	<0.94	<1.46	<1.49	<1.42	<2.48	2.68	3.81	<3.10	<1.13	<0.61
PSG-43-Dup	07/26/23	08/09/23	<0.89	<1.49	<0.66	<0.66	<1.63	<1.15	<0.58	<1.42	<0.94	<1.46	<1.49	<1.42	<2.48	2.6	3.78	<3.10	<1.13	<0.61
PSG-44	07/25/23	08/08/23	<0.87	<1.48	<0.65	<0.65	<1.61	<1.14	<0.58	<1.40	<0.92	<1.44	<1.48	<1.40	<2.45	<1.39	<1.39	<3.06	<1.11	<0.60
PSG-45	07/25/23	08/08/23	<0.88	22.4	<0.65	<0.65	8.95	<1.14	<0.58	<1.40	<0.93	12.4	11.5	<1.40	<2.45	28.7	30.4	53.8	<1.12	<0.61
PSG-46	07/25/23	08/08/23	<0.88	11.6	<0.65	<0.65	3.97	<1.14	<0.58	<1.40	1.4	4.62	6.78	<1.40	<2.45	8.63	8.81	30.3	<1.12	<0.61
PSG-47	07/26/23	08/09/23	<0.88	<1.49	<0.66	<0.66	<1.63	<1.15	<0.58	<1.42	<0.94	10.6	<1.49	<1.42	<2.48	16.1	45.1	4.14	<1.13	<0.61
PSG-48	07/26/23	08/09/23	<0.88	6.71	<0.66	<0.66	<1.63	<1.15	<0.58	<1.42	<0.93	59.9	3.74	<1.42	<2.48	123	225	<3.10	<1.13	<0.61
PSG-49	07/26/23	08/09/23	<0.88	<1.48	<0.66	<0.66	<1.62	<1.14	<0.58	<1.41	1.55	<1.45	<1.48	<1.41	<2.46	<1.40	2.85	4.88	<1.12	<0.61
PSG-50	07/26/23	08/09/23	<0.89	<1.49	<0.66	<0.66	<1.63	<1.15	<0.58	6.35	<0.94	<1.46	<1.49	<1.42	<2.48	<1.41	2	<3.10	<1.13	2.58
PSG-51	07/25/23	08/08/23	<0.88	<1.48	<0.66	<0.66	<1.62	<1.15	<0.58	<1.41	<0.93	2.52	<1.48	<1.41	<2.46	5.13	11.8	3.99	<1.12	1.26
PSG-52	07/25/23	08/08/23	<0.88	2.43	<0.66	<0.66	3.23	<1.15	<0.58	<1.41	<0.93	3.32	<1.48	<1.41	<2.46	7.28	14.7	10.4	<1.12	1.97
PSG-53	07/24/23	08/08/23	<0.83	<1.40	<0.62	<0.62	<1.53	<1.08	<0.55	<1.33	<0.88	<1.37	<1.40	<1.33	<2.33	<1.32	1.69	6.63	<1.06	<0.57
PSG-54	07/24/23	08/08/23	<0.83	<1.40	<0.62	<0.62	<1.53	<1.08	<0.55	<1.33	<0.88	<1.37	<1.40	<1.33	<2.33	2.35	4.51	<2.91	<1.06	3.21
PSG-55	07/24/23	08/08/23	<0.83	<1.40	<0.62	<0.62	<1.53	<1.08	<0.55	<1.33	35.6	<1.37	1.7	<1.33	<2.33	<1.32	<1.32	<2.91	5.97	3.58
PSG-56	07/24/23	08/08/23	<0.83	<1.40	<0.62	<0.62	<1.53	<1.08	<0.55	<1.33	<0.88	<1.37	<1.40	<1.33	<2.33	1.44	3.03	3.32	<1.06	<0.58
PSG-57	07/25/23	08/08/23	<0.88	8.46	<0.65	<0.65	<1.61	<1.14	<0.58	<1.40	<0.93	<1.44	<1.48	<1.40	<2.45	3.22	3.56	13.5	<1.12	0.65
PSG-58	07/25/23	08/08/23	<0.88	6.97	<0.65	<0.65	<1.61	<1.14	<0.58	<1.40	<0.93	<1.44	2.03	<1.40	<2.45	2.17	3.53	8.54	<1.11	<0.61
PSG-59	07/25/23	08/08/23	<0.88	<1.48	<0.65	<0.65	<1.61	<1.14	<0.58	<1.40	<0.93	4.2	<1.48	<1.40	<2.45	9.54	19.3	4.23	<1.12	1.41
PSG-60	07/26/23	08/09/23	<0.88	<1.49	<0.66	<0.66	<1.62	<1.15	< 0.58	<1.41	< 0.93	<1.45	<1.49	<1.41	<2.47	<1.40	<1.40	<3.09	<1.12	<0.61
PSG-61	07/25/23	08/08/23	<0.88	32.2	<0.65	<0.65	4.32	<1.14	<0.58	<1.40	< 0.93	9.1	15.7	<1.40	<2.45	42.2	28.6	57.4	<1.12	<0.61
PSG-61-Dup	07/25/23	08/08/23	<0.88	31.3	<0.65	<0.65	3.94	<1.14	<0.58	<1.40	< 0.93	7.98	15.8	<1.40	<2.45	41.6	29	43.3	<1.12	0.97
PSG-62	07/25/23	08/08/23	<0.88	2.73	<0.65	< 0.65	<1.61	<1.14	< 0.58	<1.40	63.7	<1.44	<1.48	<1.40	<2.45	2.11	2.49	9.81	16.6	< 0.61
PSG-63	07/25/23	08/08/23	<0.88	<1.48	<0.66	< 0.66	<1.62	<1.14	<0.58	2.56	< 0.93	<1.45	<1.48	<1.41	<2.46	1.67	3.02	<3.08	<1.12	< 0.61
PSG-64	07/25/23	08/08/23	<0.88	<1.48	< 0.66	< 0.66	<1.62	<1.14	< 0.58	<1.41	< 0.93	<1.45	<1.48	<1.41	<2.46	<1.40	<1.40	<3.08	<1.12	< 0.61

Notes:

TPH = Total Petroleum Hydrocarbons VOCs = Volatile Organic Compounds -- = not analyzed, not applicable, or not established μg/m³ = micrograms per cubic meter <X = not detected at or above laboratory reporting limit X. Bold text indicates a concentration detected above the laboratory reporting limit. Yellow highlighted concentrations indicate an exceedance of the Commercial/Industrial ESL for Vapor Intrusion Risk TPH analyzed by United States Environmental Protection Agency (USEPA) Method 8260C. VOCs analyzed by EPA Method 8260C.

¹Sample IDs with '-Dup' indicates the sample was a duplicate sample of the sample ID listed (i.e. PSG-15-Dup is a duplicate of PSG-15).

										Unfiltere	d Metals								
Sample ID	Sample Date	면 며 고	ah Arsenic ۲	dh ٦/۵h	b ^ă ⊤∕a	م) اکم ا	b ^{dh} Chromium	b⊟ bo P Chromium	لق ^ل Cobalt	Л ^{бћ}	реад µg/L	D) ^{6t} ∏	년 전 고	hβh Nickel	dh T/۵	^{bd} 7/б	^T ⊃ Thallium	dd ۲ Vanadium	hā\r
-	L Priority List ¹	6.0E+00	1.0E+01	1.0E+03	4.0E+00		5.0E+01	2.0E-02	6.0E+00	1.0E+03	1.5E+01	2.0E+00	1.0E+02	1.0E+02	5.0E+01	1.0E+02	2.0E+00		5.0E+03
MW-10	08/09/23	<40	31	1100	2.4	<5.0	270	<1.0	58	140	64	<0.40	<10	330	<30	<5.0	<50	260	280
MW-11	08/09/23	<40	<10	140	<1.0	<5.0	18	<1.0	<5.0	10	<10	<0.40	15	24	<30	<5.0	<50	22	<50
MW-12	08/09/23	<40	<10	140	<1.0	<5.0	<10	<1.0	<5.0	<10	<10	<0.40	<10	14	<30	<5.0	<50	9.9	<50
MW-13	08/09/23	<40	<10	240	<1.0	<5.0	20	<1.0	<5.0	<10	<10	<0.40	<10	27	<30	<5.0	<50	17	<50
MW-14	08/09/23	<40	<10	110	<1.0	<5.0	22	<1.0	6.1	12	<10	<0.40	<10	30	<30	<5.0	<50	25	<50
MW-15	08/09/23	<40	<10	67	<1.0	<5.0	<10	<1.0	<5.0	<10	<10	<0.40	16	13	<30	<5.0	<50	13	<50
MW-16	08/09/23	<40	<10	85	<1.0	<5.0	<10	<1.0	<5.0	<10	<10	<0.40	15	<10	<30	<5.0	<50	<5.0	<50
MW-17	08/09/23	<40	39	1600	3.1	<5.0	440	<1.0	120	250	88	<0.40	<10	460	<30	<5.0	<50	400	430

										Filterec	l Metals								
Sample ID	Sample Date	at P ⊤	hôt ۲ Arsenic	hd/T	hôh ٦/۵۳	T) Cadmium	hdhromium	bt Hexavalent ๅ∕ Chromium	⊡ [,] Cobalt	Л ^{бћ}	реаd Т	Joh ⊤	ଇଁ ଅଷ୍ଟ Molybdenum	∫ät ⊤∖ Nickel	dh T/۵	∫öπ ๅ	5t Thallium	dh ۲) Vanadium	zinc آمار
MCL	Priority List ¹	6.0E+00	1.0E+01	1.0E+03	4.0E+00		5.0E+01	2.0E-02	6.0E+00	1.0E+03	1.5E+01	2.0E+00	1.0E+02	1.0E+02	5.0E+01	1.0E+02	2.0E+00		5.0E+03
MW-10	08/09/23	<40	15	59	<1.0	<5.0	<10		<5.0	<10	<10	<0.40	12	<10	<30	<5.0	<50	<5.0	<50
MW-11	08/09/23	<40	<10	65	<1.0	<5.0	<10		<5.0	<10	<10	<0.40	<10	<10	<30	<5.0	<50	7	<50
MW-12	08/09/23	<40	<10	120	<1.0	<5.0	<10		<5.0	<10	<10	<0.40	<10	<10	<30	<5.0	<50	5.7	<50
MW-13	08/09/23	<40	<10	200	<1.0	<5.0	<10		<5.0	<10	<10	<0.40	<10	<10	<30	<5.0	<50	<5.0	<50
MW-14	08/09/23	<40	<10	59	<1.0	<5.0	<10		<5.0	<10	<10	<0.40	<10	<10	<30	<5.0	<50	<5.0	<50
MW-15	08/09/23	<40	<10	44	<1.0	<5.0	<10		<5.0	<10	<10	<0.40	<10	<10	<30	<5.0	<50	<5.0	<50
MW-16	08/09/23	<40	<10	76	<1.0	<5.0	<10		<5.0	<10	<10	<0.40	<10	<10	<30	<5.0	<50	<5.0	<50
MW-17	08/09/23	<40	12	76	<1.0	<5.0	<10		<5.0	<10	<10	0.67	<10	<10	<30	<5.0	<50	<5.0	<50

Notes:

-- = not established or not analyzed

µg/L = micrograms per liter

<X = Not detected at or above laboratory reporting limit X.

Bold text indicates a concentration detected above the laboratory reporting limit.

Yellow highlighted concentrations indicate an exceedance of the MCL Priority ESLs

Metals analyzed by United States Environmental Protection Agency (USEPA) Methods 6010B/7470A. Hexavalent Chromium analyzed by EPA 218.6.

¹San Francisco Bay Regional Water Quality Control Board 2019. Environmental Screening Levels (ESLs): Direct Exposure Human Health Risk Levels (Table GW-1) MCL Priority. January 2019 (Revision 2).

			TPH								VO	Cs						
	Sample	TPH-Gasoline (TPH-g)	TPH-Diesel (TPH-d)	TPH-Motor Oil (TPH-mo)	1,1-Dichloroethene (1,1-DCE)	1,2-Dichloroethane (1,2-DCA)	Vinyl Chloride	1,1,1,2- Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2- Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3- Chloropropane
Sample ID	Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L
MCL	Priority List ¹	7.6E+02	2.0E+02		6.0E+00	5.0E-01	5.0E-01	5.7E-01	2.0E+02	1.0E+00	5.0E+00	5.0E+00			5.0E-03	5.0E+00		2.0E-01
Commercial/Ind	ustrial ESLs ²				2.8E+02	9.8E+00	1.4E-01	1.7E+01	6.3E+03	1.4E+01	2.3E+01	3.3E+01			9.4E+01	1.5E+02		3.4E-01
MW-10	08/09/23	<50	<110	<320	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
MW-11	08/09/23	1100	190	<310	<0.5	0.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
MW-12	08/09/23	<50	<96	<290	200	<0.5	2.9	<0.5	<0.5	<0.5	<0.5	3.2	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
MW-13	08/09/23	120	240	<290	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
MW-14	08/09/23	<50	160	<290	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
MW-15	08/09/23	<50	<93	<280	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
MW-16	08/09/23	<50	700	350	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0
MW-17	08/09/23	<50	240	<310	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0

Notes:

VOC = Volatile Organic Compund

TPH = Total Petroleum Hydrocarbons

MCLs = California Maximum Contaminant Level

ESLs = Environmental Screening Levels

-- = not established

<X = not detected at or above laboratory reporting limit X.

 μ g/L = micrograms per liter

Bold text indicates a concentration detected above the laboratory reporting limit.

Yellow highlighted concentrations indicate an exceedance of the MCL Priority ESLs

Green highlighted concentrations indicate an exceedance of both the MCL Priority ESLs and the GW Vapor Intrusion Commercial/Industrial ESLs

VOCs analyzed by Environmental Protection Agency (USEPA) Method 8260B.

TPH-g analyzed by EPA Method 8260B

TPH-d and TPH-mo analyzed by EPA Method 8015B.

¹San Francisco Bay Regional Water Quality Control Board 2019. Environmental Screening Levels (ESLs): Direct Exposure Human Health Risk Levels (Table GW-1) MCL Priority. January 2019 (Revision 2).

									VOCs									
	Sample	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Butanone	2-Chlorotoluene	4-Chlorotoluene	4-Methyl-2-Pentanone	Acetone	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane
Sample ID	Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
MCL	L Priority List ¹	5.0E-02	1.0E+02	5.0E+00	-	6.0E+02		5.0E+00		5.6E+03			1.2E+02	1.4E+04	1.0E+00			8.0E+01
Commercial/Inc	dustrial ESLs ²	7.6E-01	1.1E+04	1.0E+01				1.1E+01		9.5E+06			2.3E+06	9.7E+07	1.8E+00			3.8E+00
MW-10	08/09/23	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	<5.0	<20	<0.5	<1.0	<0.5	<0.5
MW-11	08/09/23	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	<5.0	<20	<0.5	<1.0	<0.5	<0.5
MW-12	08/09/23	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	<5.0	<20	<0.5	<1.0	<0.5	<0.5
MW-13	08/09/23	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	<5.0	<20	<0.5	<1.0	<0.5	<0.5
MW-14	08/09/23	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	<5.0	<20	<0.5	<1.0	<0.5	<0.5
MW-15	08/09/23	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	<5.0	<20	<0.5	<1.0	<0.5	<0.5
MW-16	08/09/23	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	<5.0	<20	<0.5	<1.0	<0.5	<0.5
MW-17	08/09/23	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	<5.0	<20	<0.5	<1.0	<0.5	<0.5

Notes:

VOC = Volatile Organic Compund

TPH = Total Petroleum Hydrocarbons

MCLs = California Maximum Contaminant Level

ESLs = Environmental Screening Levels

-- = not established

<X = not detected at or above laboratory reporting limit X.

 μ g/L = micrograms per liter

Bold text indicates a concentration detected above the laboratory reporting limit.

Yellow highlighted concentrations indicate an exceedance of the MCL Priority ESLs

Green highlighted concentrations indicate an exceedance of both the MCL Priority ESLs and the GW Vapor Intrusion Commercial/Industrial ESLs

VOCs analyzed by Environmental Protection Agency (USEPA) Method 8260B.

TPH-g analyzed by EPA Method 8260B

TPH-d and TPH-mo analyzed by EPA Method 8015B.

¹San Francisco Bay Regional Water Quality Control Board 2019. Environmental Screening Levels (ESLs): Direct Exposure Human Health Risk Levels (Table GW-1) MCL Priority. January 2019 (Revision 2).

									VOCs									
	Sample	Bromoform	Bromomethane	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane (Freon-12)	Ethylbenzene	Freon 113	Hexachlorobutadiene	lsopropylbenzene	m,p-Xylenes
Sample ID	Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
MCL	. Priority List ¹	8.0E+01	7.5E+00	5.0E-01	7.0E+01	2.1E+04	8.0E+01	1.9E+02	6.0E+00		8.0E+01			3.0E+01		1.4E-01		
Commercial/Ind	ustrial ESLs ²	5.1E+02	7.3E+01	1.9E+00	1.7E+03	9.7E+04	3.6E+00	1.1E+03	2.1E+02					1.5E+01		1.3E+00		
MW-10	08/09/23	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5	<1.0
MW-11	08/09/23	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	2.3	<0.5	<2.0	4.9	<1.0
MW-12	08/09/23	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	2.9	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5	<1.0
MW-13	08/09/23	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5	<1.0
MW-14	08/09/23	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5	<1.0
MW-15	08/09/23	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5	<1.0
MW-16	08/09/23	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5	<1.0
MW-17	08/09/23	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5	<1.0

Notes:

VOC = Volatile Organic Compund

TPH = Total Petroleum Hydrocarbons

MCLs = California Maximum Contaminant Level

ESLs = Environmental Screening Levels

-- = not established

<X = not detected at or above laboratory reporting limit X.

 μ g/L = micrograms per liter

Bold text indicates a concentration detected above the laboratory reporting limit.

Yellow highlighted concentrations indicate an exceedance of the MCL Priority ESLs

Green highlighted concentrations indicate an exceedance of both the MCL Priority ESLs and the GW Vapor Intrusion Commercial/Industrial ESLs

VOCs analyzed by Environmental Protection Agency (USEPA) Method 8260B.

TPH-g analyzed by EPA Method 8260B

TPH-d and TPH-mo analyzed by EPA Method 8015B.

¹San Francisco Bay Regional Water Quality Control Board 2019. Environmental Screening Levels (ESLs): Direct Exposure Human Health Risk Levels (Table GW-1) MCL Priority. January 2019 (Revision 2).

								VOCs								
	Sample	Methyl-tert-butyl ether (MTBE)	Methylene Chloride	n-Butylbenzene	n-Propylbenzene	o-Xylene	para-Isopropyl Toluene	sec-Butylbenzene	Styrene	tert-Butylbenzene	Tetrachloroethene (PCE)	Toluene	trans-1,2-Dichloroethene	trans-1,3- Dichloropropene	Trichloroethene (TCE)	Trichlorofluoromethane
Sample ID	Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
MCL	Priority List ¹	5.0E+00	5.0E+00						1.0E+01		5.0E+00	4.0E+01	1.0E+01		5.0E+00	
Commercial/Ind	ustrial ESLs ²	2.0E+03	9.4E+01						3.6E+04		2.8E+00	4.9E+03	9.2E+02		7.5E+00	
MW-10	08/09/23	<0.5	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-11	08/09/23	<0.5	<10	1.5	8.7	<0.5	<0.5	1.7	<0.5	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-12	08/09/23	<0.5	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-13	08/09/23	<0.5	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-14	08/09/23	<0.5	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-15	08/09/23	3.5	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-16	08/09/23	<0.5	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-17	08/09/23	<0.5	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	<0.5	1.0	<0.5

Notes:

VOC = Volatile Organic Compund

TPH = Total Petroleum Hydrocarbons

MCLs = California Maximum Contaminant Level

ESLs = Environmental Screening Levels

-- = not established

<X = not detected at or above laboratory reporting limit X.

 μ g/L = micrograms per liter

Bold text indicates a concentration detected above the laboratory reporting limit.

Yellow highlighted concentrations indicate an exceedance of the MCL Priority ESLs

Green highlighted concentrations indicate an exceedance of both the MCL Priority ESLs and the GW Vapor Intrusion Commercial/Industrial ESLs

VOCs analyzed by Environmental Protection Agency (USEPA) Method 8260B.

TPH-g analyzed by EPA Method 8260B

TPH-d and TPH-mo analyzed by EPA Method 8015B.

¹San Francisco Bay Regional Water Quality Control Board 2019. Environmental Screening Levels (ESLs): Direct Exposure Human Health Risk Levels (Table GW-1) MCL Priority. January 2019 (Revision 2).

Sample ID	Sample Date	ଇ ୁ ๅ	여 고)여 고	\dr 2-Methylnaphthalene	ਰਿ Acenaphthene	면 고 고	ର୍ଘ ୮/୦ ୮	년 G Penzo(a)anthracene	년 영 고	ਰਿ ਹਿੱ ਰ	편 죠 ᄀ	طً ⊤ ⊐ Danzo(k)fluoranthene	Dh rysene Л ^а Г	면 여 고	العام) حالمان	Л ^{аћ}	편 고 고 고 (1,2,3-cd)pyrene	Д Л/ ^Б	ha/r
	Priority List ¹	1.7E-01		3.6E+01	5.3E+02	µg/∟ 	1.8E+03	1.7E-02	2.0E-01	2.5E-01	µg/∟ 	2.5E+00	2.5E+01	2.5E-02	8.0E+02	2.9E+02	2.5E-01	µg/∟ 	1.2E+02
Commercial/Ind	-	2.0E+01						2.3E+02											
MW-10	08/09/23	<0.54	<0.54	<0.54	<0.54	<0.54	<0.54	<0.54	<0.54	<0.54	<0.54	<0.54	<0.54	<0.54	<0.54	<0.54	<0.54	<0.54	<0.54
MW-11	08/09/23	2.8	7.4	4.4	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52
MW-12	08/09/23	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MW-13	08/09/23	<0.48	1.2	0.92	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48
MW-14	08/09/23	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48
MW-15	08/09/23	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47
MW-16	08/09/23	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MW-17	08/09/23	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52

Notes:

PAHs = Polyaromatic Hydrocarbons

MCLs = California Maximum Contaminant Level

ESLs = Environmental Screening Levels

-- = not established

µg/L = micrograms per liter

<X = Not detected at or above laboratory reporting limit X.

Bold text indicates a concentration detected above the laboratory reporting limit.

Yellow highlighted concentrations indicate an exceedance of the MCL Priority ESLs

PAHs analyzed by Environmental Protection Agency (USEPA) Method 8270C-selected ion monitoring (SIM) mode.

¹San Francisco Bay Regional Water Quality Control Board 2019. Environmental Screening Levels (ESLs): Direct Exposure Human Health Risk Levels (Table GW-1) MCL Priority. January 2019 (Revision 2).

Sample ID	Sample	5 4,4'-DDD	5 4,4'-DDE	ទ្ម៍ 4,4'-DDT	S Aldrin	α- BHC T/۵ή	р В-ВНС	د γ-BHC (Lindane)	5-BHC	Chlordane - Technical	Dieldrin	Endosulfan I	며 고 고	Endosulfan sulfate	Bndrin	Endrin aldehyde	Endrin ketone	Heptachlor	년 년 고	편 편 T	2 Toxaphene
Sample ID	Date Priority List ¹	μg/L 3.1E-02	μg/L 4.6E-02	μg/L 2.3E-01	µg/L 9.2E-04		µg/L	μg/L 2.0E-01	µg/L	µg/L	μg/L 7.1E-04	µg/L		µg/L	2.0E+00	µg/L	µg/L	µg/L 1.0E-02	μg/∟ 1.0E-02	µg/∟ 3.0E+01	μg/L 3.0E+00
				2.3E-01				2.00-01							2.00+00					3.0E+01	3.0E+00
Commercial/Ind			7.4E+01		1.4E+00						6.5E+00							7.9E-01	5.5E+00		
MW-10	08/09/23	<0.1	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<1.0	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.05	<0.1	<2.0
MW-11	08/09/23	<0.1	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<1.0	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.05	<0.1	<2.0
MW-12	08/09/23	<0.1	<0.1	<0.1	< 0.05	<0.05	<0.05	<0.05	<0.05	<1.0	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	< 0.05	<0.1	<2.0
MW-13	08/09/23	<0.09	<0.09	<0.09	<0.05	<0.05	<0.05	<0.05	<0.05	<0.9	<0.09	<0.05	<0.09	<0.09	<0.09	<0.09	<0.09	< 0.05	<0.05	<0.09	<1.9
MW-14	08/09/23	<0.09	<0.09	<0.09	<0.05	<0.05	<0.05	<0.05	<0.05	<0.9	<0.09	<0.05	<0.09	<0.09	<0.09	<0.09	<0.09	<0.05	<0.05	<0.09	<1.9
MW-15	08/09/23	<0.09	<0.09	<0.09	<0.05	<0.05	<0.05	<0.05	<0.05	<0.9	<0.09	<0.05	<0.09	<0.09	<0.09	<0.09	<0.09	<0.05	<0.05	<0.09	<1.9
MW-16	08/09/23	<0.1	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<1.0	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.05	<0.1	<2.0
MW-17	08/09/23	<0.1	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<1.0	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.05	<0.1	<1.9

Notes:

MCLs = California Maximum Contaminant Level

ESLs = Environmental Screening Levels

Pesticides analyzed by Environmental Protection Agency (USEPA) Method 8081A.

-- = not established

µg/L = micrograms per liter

<X = Not detected at or above laboratory reporting limit X.

¹San Francisco Bay Regional Water Quality Control Board 2019. Environmental Screening Levels (ESLs): Direct Exposure Human Health Risk Levels (Table GW-1) MCL Priority. January 2019 (Revision 2).

Sample ID	Sample Date	b ^b ⊤∕oter-1016	ର୍ଘ ୁ ଅ	ର୍ଘ ୁ ଅ	bt ∩ Arocior-1242	ର୍ଘ ୁ ଅ	o ^b _ 254	βth Aroclor-1260
	L Priority List ¹	5.00E-01	5.00E-01	5.00E-01	5.00E-01	5.00E-01	5.00E-01	5.00E-01
MW-10	08/09/23	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MW-11	08/09/23	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MW-12	08/09/23	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49
MW-13	08/09/23	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47
MW-14	08/09/23	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47
MW-15	08/09/23	<0.46	<0.46	<0.46	<0.46	<0.46	<0.46	<0.46
MW-16	08/09/23	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MW-17	08/09/23	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48	<0.48

Notes:

PCB = Polychlorinated biphenyl

MCLs = California Maximum Contaminant Level

PCBs analyzed by Environmental Protection Agency Method SW8082.

 μ g/L = micrograms per liter

<X = Not detected at or above laboratory reporting limit X.

¹San Francisco Bay Regional Water Quality Control Board 2019. Environmental Screening Levels (ESLs): Direct Exposure Human Health Risk Levels (Table GW-1) MCL Priority. January 2019 (Revision 2).

Sample ID	Depth (ft bgs)	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	Copper mg/kg	Lead mg/kg	Mercury mg/kg	molybdenum wg/kg	Nickel mg/kg	Selenium mg/kg	mg/kg	mg/kg	mg/kg	Zinz mg/kg
Comr	mercial/Indu	strial ESLs ¹	1.6E+02	1.1E+01	2.2E+05	2.3E+02	1.1E+03		3.5E+02	4.7E+04	3.2E+02	1.9E+02	5.8E+03	1.1E+04	5.8E+03	5.8E+03	1.2E+01	5.8E+03	3.5E+05
MW-10-5.0	5	07/26/23	<0.96	7.2	260	<0.96	<0.48	67	10	37	10	<0.16	<0.96	56	<1.9	<0.48	<0.96	66	74
MW-10-10.0	10	07/26/23	<0.97	8.4	290	<0.97	<0.49	67	12	34	9.1	<0.15	<0.97	57	<1.9	<0.49	<0.97	66	69
MW-10-15.0	15	07/26/23	<0.95	4.9	170	<0.95	<0.48	57	13	23	8.4	<0.16	<0.95	66	<1.9	<0.48	<0.95	42	48
MW-11-5.0	5	07/25/23	<0.99	9.4	300	<0.99	3	89	34	49	76	0.2	<0.99	220	<2.0	<0.50	<0.99	70	2200
MW-11-10.0	10	07/25/23	<0.97	5.1	320	<0.97	<0.49	59	9.5	34	15	<0.16	<0.97	55	<1.9	<0.49	<0.97	47	78
MW-11-14.0	14	07/25/23	<0.97	6.7	170	<0.97	<0.49	39	15	27	13	<0.16	<0.97	49	<1.9	<0.49	<0.97	50	55
MW-11-15.0	15	07/25/23	<0.96	3.8	190	<0.96	<0.48	53	12	22	8.5	<0.15	<0.96	72	<1.9	<0.48	<0.96	34	54
MW-12-5.0	5	07/25/23	<0.96	2.8	260	<0.96	0.75	28	6.3	21	81	<0.16	<0.96	28	<1.9	<0.48	<0.96	24	590
MW-12-10.0	10	07/25/23	<0.95	6.5	300	<0.95	<0.48	66	18	34	17	0.19	<0.95	60	<1.9	<0.48	<0.95	59	69
MW-12-15.0	15	07/25/23	<0.98	6.6	130	<0.98	<0.49	52	12	24	11	<0.15	<0.98	62	<2.0	<0.49	<0.98	44	53
MW-12-20.0	20	07/25/23	<0.95	7.3	200	<0.95	<0.48	52	13	23	11	<0.15	<0.95	56	<1.9	<0.48	<0.95	46	52
MW-12-25.0	25	07/25/23	<0.97	16	210	<0.97	<0.49	56	15	39	17	<0.15	<0.97	61	<1.9	<0.49	<0.97	75	90
MW-13-3.0	3	07/31/23	3.8	65	4600	<0.99	5.7	81	6.7	61	200	0.49	<0.99	25	36	<0.50	<0.99	18	200
MW-13-5.0	5	07/31/23	<0.97	15	1200	<0.97	0.94	64	9.6	30	33	<0.16	<0.97	52	5.6	<0.49	<0.97	47	81
MW-13-6.0	6	07/31/23	<0.97	6.9	320	<0.97	<0.49	65	13	32	14	<0.15	<0.97	58	<1.9	<0.49	<0.97	67	66
MW-13-10.0	10	07/31/23	<0.96	5.1	210	<0.96	<0.48	59	11	29	7	<0.14	<0.96	45	<1.9	<0.48	<0.96	52	52
MW-13-15.0	15	07/31/23	<0.97	3.8	200	<0.97	<0.49	53	14	24	6.8	<0.16	<0.97	59	<1.9	<0.49	<0.97	38	58
MW-13-20.0	20	07/31/23	<0.95	1.9	180	<0.95	0.48	51	12	25	5.3	<0.14	<0.95	54	<1.9	<0.48	<0.95	33	53
MW-14-5.0	5	07/28/23	<0.99	2.3	260	<0.99	<0.50	55	7.5	28	7	<0.16	<0.99	44	<2.0	<0.50	<0.99	43	58
MW-14-10.0	10	07/28/23	<0.96	5.7	130	<0.96	<0.48	46	12	21	5.9	<0.16	<0.96	61	<1.9	<0.48	<0.96	33	46
MW-14-15.0	15	07/28/23	<0.98	4.7	83	<0.98	<0.49	33	8.1	16	4.3	0.62	<0.98	38	<2.0	<0.49	<0.98	28	38
MW-15-5.0	5	07/28/23	<0.97	3.5	110	<0.97	<0.49	28	6.9	13	4.1	<0.16	<0.97	34	<1.9	<0.49	<0.97	24	30
MW-15-10.0	10	07/28/23	<0.96	4.6	120	<0.96	<0.48	32	9	14	4.7	<0.16	<0.96	38	<1.9	<0.48	<0.96	27	34
MW-15-15.0	15	07/28/23	<0.99	2.6	120	<0.99	<0.50	42	8.7	20	5.7	<0.15	<0.99	48	<2.0	<0.50	<0.99	34	45
MW-16-5.0	5	07/27/23	2.9	13	200	<0.99	2.6	80	17	120	630	2.9	1.5	44	<2.0	<0.50	<0.99	92	600
MW-16-10.0	10	07/27/23	<0.96	5.5	88	<0.96	<0.48	62	17	40	14	<0.16	<0.96	35	<1.9	<0.48	<0.96	90	92
MW-16-15.0	15	07/27/23	<0.97	5.3	130	<0.97	<0.49	35	9.3	18	5.6	<0.15	<0.97	47	<1.9	<0.49	<0.97	30	40
MW-17-5.0	5	07/26/23	<0.98	7.5	140	<0.98	<0.49	58	11	37	13	<0.16	<0.98	54	<2.0	<0.49	<0.98	54	82
MW-17-10.0	10	07/26/23	<0.96	6.9	400	<0.96	<0.48	64	11	34	8.4	<0.16	<0.96	52	<1.9	<0.48	<0.96	64	61
MW-17-15.0	15	07/26/23	<0.96	5.8	200	<0.96	<0.48	63	11	34	6.7	<0.14	<0.96	53	<1.9	<0.48	<0.96	59	60

Notes:

ESLs = Environmental Screening Levels

-- = not established

mg/kg = milligrams per kilogram

ft bgs = feet below ground surface

<X = Not detected at or above laboratory reporting limit X.

Bold text indicates a concentration detected above the laboratory reporting limit.

Green highlighted concentration indicate an exceedance of the Commercial/Industrial ESLs

Metals analyzed by United States Environmental Protection Agency (USEPA) Methods 6020/7471A.

¹San Francisco Bay Regional Water Quality Control Board 2019. Environmental Screening Levels (ESLs): Direct Exposure Human Health Risk Levels (Table S-1) Commercial/Industrial: Shallow Soil Exposure. January 2019 (Revision 2). ²Arsenic concentrations are compared to the accepted background concentration for the San Francisco Bay Region as presented in " Establishing Background Arsenic in Soil of The Urbanized San Francisco Bay Region " by Dylan Jacques Duverge, December 2011.

				TPH VOCs																		
Sample ID	Depth (ft bqs)	Sample Date	mg/kg	Ba balanda bal	a ∕kà Baylotor Oil	죠 1,1,1,2- 죠 Tetrachloroethane	ଇ ସୁସି,1,1-Trichloroethane	ର୍ଦ୍ଧ 1,1,2,2- ରୁ Tetrachloroethane	ର୍ଘ ସୁଧି ଘ	ଇୁ ଇୁ∕ୁ ସି	ଇ ସ୍ନ୍ର 1,1-Dichloroethene	bt by/s/1,1-Dichloropropene	ਸ਼ੁੱਤ ਕ੍ਰਿ ਕਿ	ର୍ଜ୍ୟ ସୁସ୍ଥ 1,2,3-Trichloropropane	ba ≫∕, 1,2,4-Trichlorobenzene	by dy 1,2,4-Trimethylbenzene	ର୍ଘ 1,2-Dibromo-3- ନ୍ଧି Chloropropane	ର୍ଘ ସୁର୍ନ ପ	by by/ 1,2-Dichlorobenzene	b∯ by 1,2-Dichloroethane	ର୍ଘ ଅ), ସ	ଇ ୁ 1,3,5-Trimethylbenzene
•	mmercial/Indu		2.0E+03	1.2E+03	1.8E+05	8.9E+03	7.3E+06	2.7E+03	5.1E+03	1.6E+04	3.5E+05			1.1E+02	1.1E+05		5.9E+01	1.6E+02	9.4E+06	2.1E+03	4.4E+03	
MW-10-5.0	5	07/26/23	<0.7	<9.9	<20	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3
MW-10-10.0	10	07/26/23	<0.6	<9.9	<20	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-10-15.0	15	07/26/23	< 0.6	<10	<20	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
MW-11-5.0	5	07/25/23	<0.7	21	63	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5
MW-11-10.0	10	07/25/23	<0.6	<10	<20	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-11-14.0	14	07/25/23	59	<9.9	<20	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250
MW-11-15.0	15	07/25/23	79	<9.9	<20	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250
MW-12-5.0	5	07/25/23	<0.6	50	150	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-12-10.0	10	07/25/23	<0.6	<10	<20	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-12-15.0	15	07/25/23	<0.7	<9.9	<20	<3.6	<3.6	<3.6	<3.6	<3.6	19	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6
MW-12-20.0	20	07/25/23	<0.6	<10	<20	<3.2	<3.2	<3.2	<3.2	<3.2	57	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-12-25.0	15	07/25/23	<0.6	<10	<20	<3.2	<3.2	<3.2	<3.2	<3.2	28	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-13-3.0	3	07/31/23	4.3	3400	1300	<160	<160	<160	<160	<160	<160	<160	<160	<160	<160	<160	<160	<160	<160	<160	<160	<160
MW-13-5.0	5	07/31/23	2.5	1400	670	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	4.6	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5
MW-13-6.0	6	07/31/23	150	3200	1000	<670	<670	<670	<670	<670	<670	<670	<670	<670	<670	<670	<670	<670	<670	<670	<670	<670
MW-13-10.0	10	07/31/23	87	1900	590	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-13-15.0	15	07/31/23	68	350	110	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1
MW-13-20.0	20	07/31/23	<3.0	330	110	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-14-5.0	5	07/28/23	<0.7	<10	<20	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4
MW-14-10.0	10	07/28/23	<0.6	<9.9	<20	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1
MW-14-15.0	15	07/28/23	<0.6	<10	<20	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-15-5.0	5	07/28/23	<0.6	<9.9	<20	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-15-10.0	10	07/28/23	<0.6	<10	<20	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-15-15.0	15	07/28/23	<0.7	<10	<20	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5
MW-16-5.0	5	07/27/23	<35	640	1100	<180	<180	<180	<180	<180	<180	<180	<180	<180	<180	<180	<180	<180	<180	<180	<180	<180
MW-16-10.0	10	07/27/23	<0.6	<9.9	<20	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-16-15.0	15	07/27/23	<0.7	<9.9	<20	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4
MW-17-5.0	5	07/26/23	<0.7	<9.9	<20	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4
MW-17-10.0	10	07/26/23	<0.7	<9.9	<20	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3
MW-17-15.0	15	07/26/23	<0.6	<10	<20	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0

			VOCs																			
Sample ID	Depth (ft bgs)	Sample Date	ର୍ଘ ସୁଧ୍ୟ 1,3-Dichlorobenzene	ස් රූ 1,3-Dichloropropane	ର୍ଜ୍ୟୁ 1,4-Dichlorobenzene	bt by 2,2-Dichloropropane	bartanone bay	bay 2-Chlorotoluene	ba bayene bayene	ର୍ଜ୍ୟ ଅନ୍ଧି ସନ୍ଥାର୍ଯ୍ୟ - Pentanone	bh/βπ baybare	benzene β	ad Bromobenzene	b∯ by Bromochloromethane	ର୍ଜ ଅନ୍ଧି Bromodichloromethane	bd bromoform	ସ୍ଥି ସେ∕୍ସ ସ	ର୍ଘ ସୁ ଘ	hdlorobenzene (Ka	ର୍ଚ୍ଚି ପିନ୍	ର୍ଘ bay/ba bay	a), Chloromethane
-	mmercial/Indu				1.2E+04		2.0E+08			1.4E+08	6.7E+08	1.4E+03			1.3E+03	8.0E+04	3.0E+04	2.7E+03	1.3E+06	5.9E+07	1.4E+03	4.7E+05
MW-10-5.0	5	07/26/23	<3.3	<3.3	<3.3	<3.3	<66	<3.3	<3.3	<3.3	<66	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3
MW-10-10.0	10	07/26/23	<3.2	<3.2	<3.2	<3.2	<64	<3.2	<3.2	<3.2	<64	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-10-15.0	15	07/26/23	<3.0	<3.0	<3.0	<3.0	<60	<3.0	<3.0	<3.0	<60	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
MW-11-5.0	5	07/25/23	<3.5	<3.5	<3.5	<3.5	<69	<3.5	<3.5	<3.5	<69	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5
MW-11-10.0	10	07/25/23	<3.2	<3.2	<3.2	<3.2	<64	<3.2	<3.2	<3.2	<64	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-11-14.0	14	07/25/23	<250	<250	<250	<250	<5000	<250	<250	<250	<5000	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250
MW-11-15.0	15	07/25/23	<250	<250	<250	<250	<5000	<250	<250	<250	<5000	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250
MW-12-5.0	5	07/25/23	<3.2	<3.2	<3.2	<3.2	<65	<3.2	<3.2	<3.2	<65	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-12-10.0	10	07/25/23	<3.2	<3.2	<3.2	<3.2	<64	<3.2	<3.2	<3.2	<64	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-12-15.0	15	07/25/23	<3.6	<3.6	<3.6	<3.6	<72	<3.6	<3.6	<3.6	<72	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6
MW-12-20.0	20	07/25/23	<3.2	<3.2	<3.2	<3.2	<64	<3.2	<3.2	<3.2	<64	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-12-25.0	15	07/25/23	<3.2	<3.2	<3.2	<3.2	<65	<3.2	<3.2	<3.2	<65	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-13-3.0	3	07/31/23	<160	<160	<160	<160	<3200	<160	<160	<160	<3200	<160	<160	<160	<160	<160	<160	<160	<160	<160	<160	<160
MW-13-5.0	5	07/31/23	<3.5	<3.5	<3.5	<3.5	<71	<3.5	<3.5	<5.7	84	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5
MW-13-6.0	6	07/31/23	<670	<670	<670	<670	<13000	<670	<670	<670	<13000	<670	<670	<670	<670	<670	<670	<670	<670	<670	<670	<670
MW-13-10.0	10	07/31/23	<3.2	<3.2	<3.2	<3.2	<63	<3.2	<3.2	<3.2	<63	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-13-15.0	15	07/31/23	<3.1	<3.1	<3.1	<3.1	<63	<3.1	<3.1	<5.1	<63	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1
MW-13-20.0	20	07/31/23	<3.2	<3.2	<3.2	<3.2	<64	<3.2	<3.2	<3.2	<64	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-14-5.0	5	07/28/23	<3.4	<3.4	<3.4	<3.4	<69	<3.4	<3.4	<5.6	<69	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4
MW-14-10.0	10	07/28/23	<3.1	<3.1	<3.1	<3.1	<63	<3.1	<3.1	<5.1	<63	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1
MW-14-15.0	15	07/28/23	<3.2	<3.2	<3.2	<3.2	<63	<3.2	<3.2	<5.1	<63	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-15-5.0	5	07/28/23	<3.2	<3.2	<3.2	<3.2	<63	<3.2	<3.2	<5.1	<63	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-15-10.0	10	07/28/23	<3.2	<3.2	<3.2	<3.2	<64	<3.2	<3.2	<5.2	<64	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-15-15.0	15	07/28/23	<3.5	<3.5	<3.5	<3.5	<70	<3.5	<3.5	<5.7	<70	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5
MW-16-5.0	5	07/27/23	<180	<180	<180	<180	<3500	<180	<180	<180	<3500	<180	<180	<180	<180	<180	<180	<180	<180	<180	<180	<180
MW-16-10.0	10	07/27/23	<3.2	<3.2	<3.2	<3.2	<64	<3.2	<3.2	<5.2	70	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-16-15.0	15	07/27/23	<3.4	<3.4	<3.4	<3.4	<69	<3.4	<3.4	<3.4	<69	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4
MW-17-5.0	5	07/26/23	<3.4	<3.4	<3.4	<3.4	<68	<3.4	<3.4	<3.4	<68	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4
MW-17-10.0	10	07/26/23	<3.3	<3.3	<3.3	<3.3	<66	<3.3	<3.3	<3.3	<66	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3
MW-17-15.0	15	07/26/23	<3.0	<3.0	<3.0	<3.0	<60	<3.0	<3.0	<3.0	<60	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0

			VOCs																			
Sample ID	Depth (ft bgs)	Sample Date	ର୍ଜ ସୁର୍ଚ୍ଚ cis-1,2-Dichloroethene	ਸੈਂ ਕੋਸ਼ੇ altopropene	ର୍ଜୁ ସୁ ସି	br bromomethane	표 Dichlorodifluoromethan 중 e (Freon-12)	ର୍ଜି ସନ୍ଧି Ethylbenzene	bπ by/bπ ban 113	ଯ ସ୍ନ୍ ଘ	fightenzene dag	m,p-Xylenes (kg	ba bay Methylene Chloride	죠 Methyl-tert-butyl ether 죠 (MTBE)	br by∕Raphthalene	bay/a-mentene	b⊤ ay b	ba ^π d/kg	ön Skjopropyl Toluene bara-Isopropyl Toluene	ac-Butylbenzene هم کم	bt/bπ bt/styrene	ba A} tert-Butylbenzene b
	mmercial/Indu		8.5E+04		3.9E+04			2.6E+04		5.3E+03			2.5E+04	2.1E+05	1.7E+04						3.3E+07	
MW-10-5.0	5	07/26/23	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<6.6	<6.6	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3
MW-10-10.0	10	07/26/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<6.4	<6.4	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-10-15.0	15	07/26/23	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<6.0	<6.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
MW-11-5.0	5	07/25/23	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<6.9	<6.9	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5
MW-11-10.0	10	07/25/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<6.4	<6.4	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-11-14.0	14	07/25/23	<250	<250	<250	<250	<250	<250	<250	<250	<250	<500	<500	<250	<250	<250	<250	<250	<250	<250	<250	<250
MW-11-15.0	15	07/25/23	<250	<250	<250	<250	<250	<250	<250	<250	<250	<500	<500	<250	<250	<250	400	<250	<250	<250	<250	<250
MW-12-5.0	5	07/25/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<6.5	<6.5	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-12-10.0	10	07/25/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<6.4	<6.4	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-12-15.0	15	07/25/23	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<7.2	<7.2	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6
MW-12-20.0	20	07/25/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<6.4	<6.4	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-12-25.0	15	07/25/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<6.5	<6.5	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-13-3.0	3	07/31/23	<160	<160	<160	<160	<160	<160	<160	<160	<160	<320	<320	<160	<160	<160	<160	<160	<160	<160	<160	<160
MW-13-5.0	5	07/31/23	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	4.3	<7.1	<7.1	<3.5	17	3.8	8.3	<3.5	<3.5	<3.5	<3.5	<3.5
MW-13-6.0	6	07/31/23	<670	<670	<670	<670	<670	<670	<670	<670	720	<1300	<1300	<670	5400	1300	1900	<670	<670	940	<670	<670
MW-13-10.0	10	07/31/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	5.7	<6.3	<6.3	<3.2	<3.2	75	<3.2	3.4	3.4	59	<3.2	<3.2
MW-13-15.0	15	07/31/23	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<6.3	<6.3	<3.1	<3.1	4.8	<3.1	<3.1	<3.1	11	<3.1	<3.1
MW-13-20.0	20	07/31/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<6.4	<6.4	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-14-5.0	5	07/28/23	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<6.9	<6.9	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4
MW-14-10.0	10	07/28/23	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<6.3	<6.3	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1
MW-14-15.0	15	07/28/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<6.3	<6.3	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-15-5.0	5	07/28/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<6.3	<6.3	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-15-10.0	10	07/28/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<6.4	<6.4	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-15-15.0	15	07/28/23	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<7.0	<7.0	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5
MW-16-5.0	5	07/27/23	<180	<180	<180	<180	<180	<180	<180	<180	<180	<350	<350	<180	<180	<180	<180	<180	<180	<180	<180	<180
MW-16-10.0	10	07/27/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<6.4	<6.4	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
MW-16-15.0	15	07/27/23	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<6.9	<6.9	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4
MW-17-5.0	5	07/26/23	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<6.8	<6.8	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4
MW-17-10.0	10	07/26/23	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<6.6	<6.6	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3
MW-17-15.0	15	07/26/23	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<6.0	<6.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0

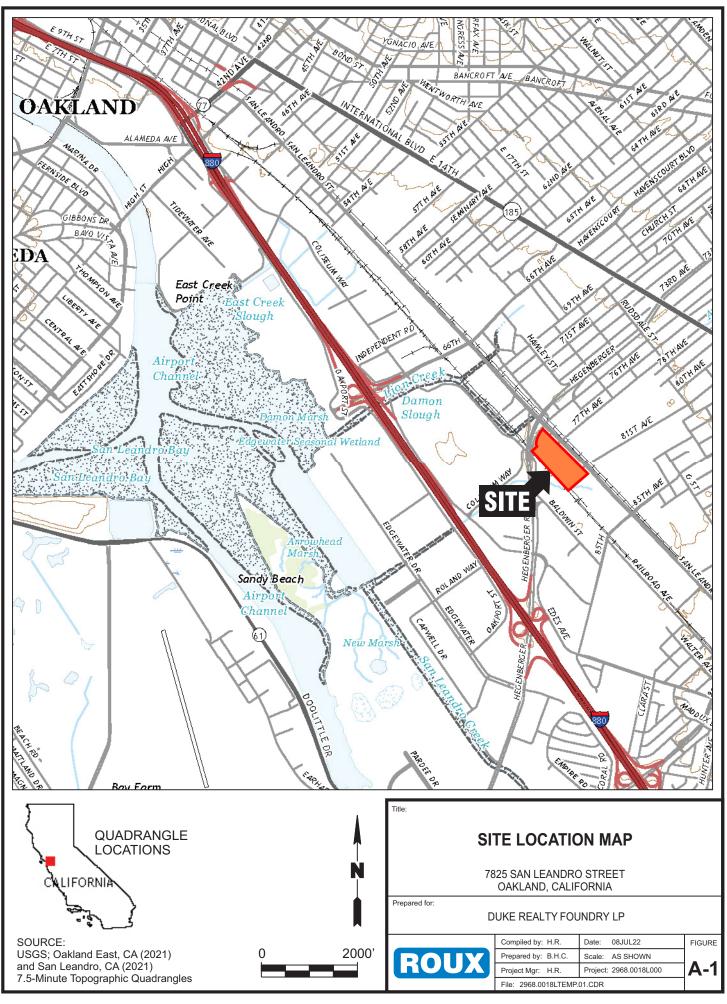
			VOCs									
Sample ID	Depth (ft bgs)	Sample Date	bh Syn by Tetrachloroethene	μg/kg	ଜୁ trans-1,2- ଜୁ Dichloroethene	ର୍ଘ trans-1,3- ସ୍ନି Dichloropropene	aγ β b	bt Sy∕S bd	ம் ay/ Vinyl Chloride			
-	nmercial/Indu		2.7E+03	5.3E+06	6.0E+05		6.1E+03	#3 /**3	1.5E+02			
MW-10-5.0	5	07/26/23	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3			
MW-10-5.0	5 10	07/26/23	<3.2	<3.2	<3.3	<3.2	<3.3	<3.2	<3.3			
MW-10-15.0	15	07/26/23	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0			
MW-10-13.0	5	07/25/23	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5			
MW-11-10.0	10	07/25/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2			
MW-11-14.0	14	07/25/23	<250	<250	<250	<250	<250	<250	<250			
MW-11-15.0	15	07/25/23	<250	<250	<250	<250	<250	<250	<250			
MW-12-5.0	5	07/25/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2			
MW-12-10.0	10	07/25/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	9.1			
MW-12-15.0	15	07/25/23	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6			
MW-12-20.0	20	07/25/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2			
MW-12-25.0	15	07/25/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2			
MW-13-3.0	3	07/31/23	<160	<160	<160	<160	<160	<160	<160			
MW-13-5.0	5	07/31/23	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5			
MW-13-6.0	6	07/31/23	<670	<670	<670	<670	<670	<670	<670			
MW-13-10.0	10	07/31/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2			
MW-13-15.0	15	07/31/23	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1			
MW-13-20.0	20	07/31/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2			
MW-14-5.0	5	07/28/23	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4			
MW-14-10.0	10	07/28/23	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1			
MW-14-15.0	15	07/28/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2			
MW-15-5.0	5	07/28/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2			
MW-15-10.0	10	07/28/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2			
MW-15-15.0	15	07/28/23	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5			
MW-16-5.0	5	07/27/23	<180	<180	<180	<180	<180	<180	<180			
MW-16-10.0	10	07/27/23	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2			
MW-16-15.0	15	07/27/23	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4			
MW-17-5.0	5	07/26/23	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4			
MW-17-10.0	10	07/26/23	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3			
MW-17-15.0	15	07/26/23	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0			

Notes:

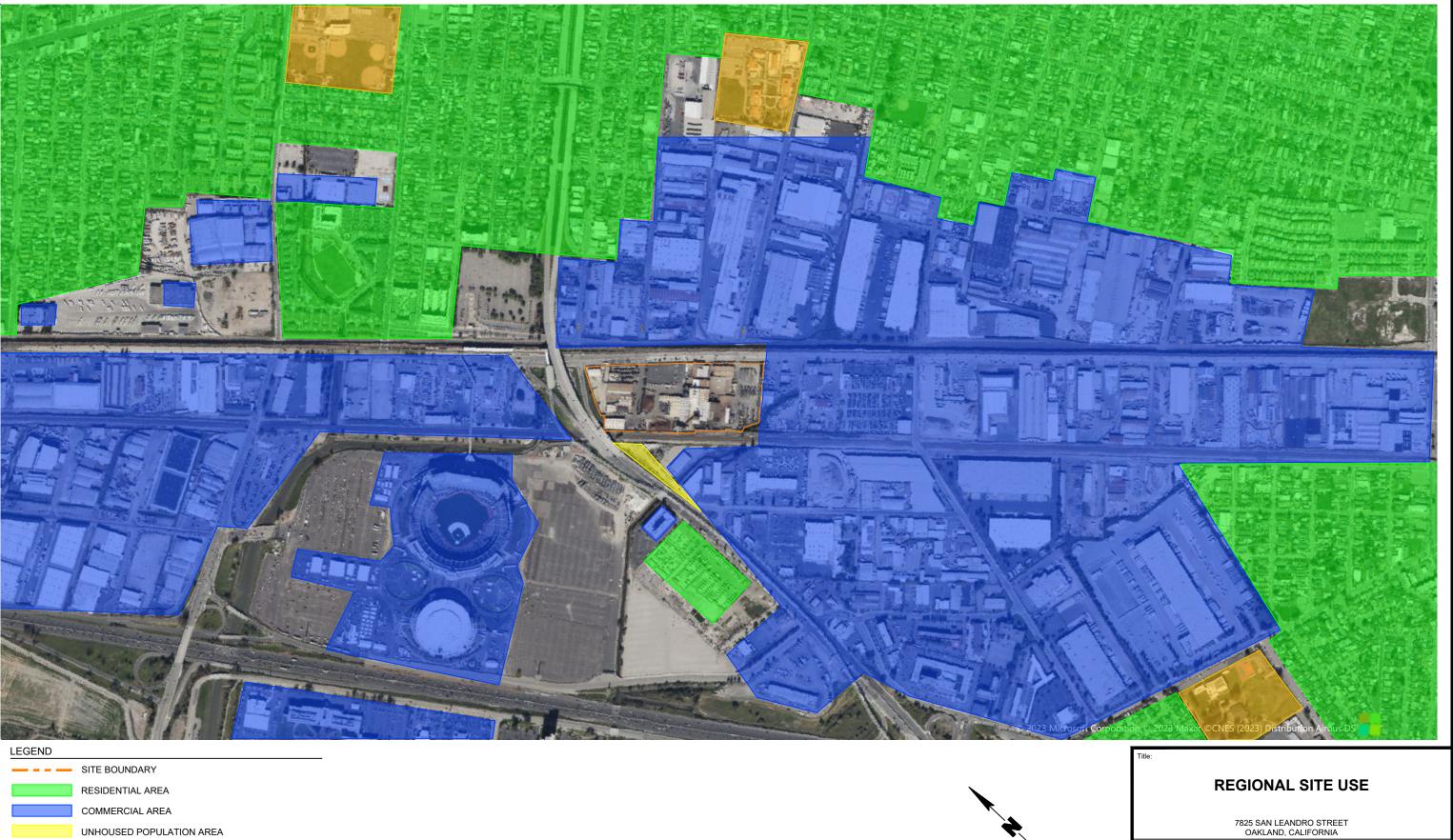
ESLs = Environmental Screening Levels TPH = Total Petroleum Hydrocarbons VOC = Volatile Organic Compound -- = not established ft bgs = feet below ground surface mg/kg = milligrams per kilogram µg/kg = micrograms per kilogram <X = Not detected at or above laboratory reporting limit X. Bold text indicates a concentration detected above the laboratory reporting limit.

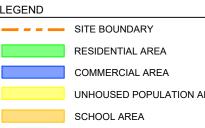
Yellow highlighted concentration indicate an exceedance of the Commercial/Industrial ESLs

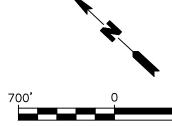
TPH analyzed by Environmental Protection Agency (USEPA) Method 8015B/8015m.

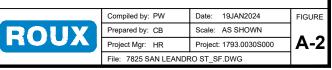

VOCs analyzed by EPA Method 8260B.

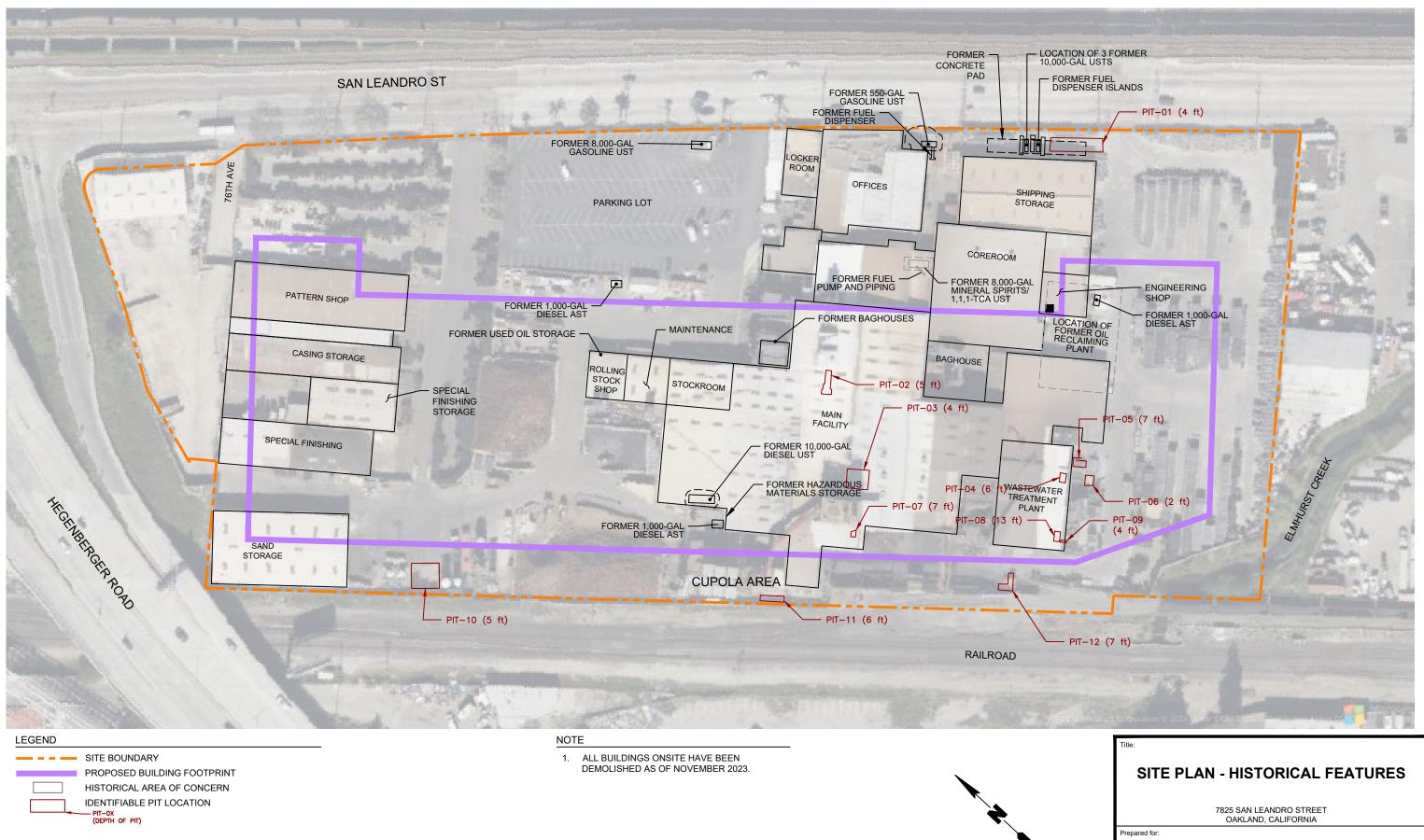
¹San Francisco Bay Regional Water Quality Control Board 2019. Environmental Screening Levels (ESLs): Direct Exposure Human Health Risk Levels (Table S-1) Commercial/Industrial: Shallow Soil Exposure. January 2019 (Revision 2).




Appendix A FIGURES


- A-1. Site Location Map
- A-2. Regional Site Use
- A-3. Site Plan Historical Features
- A-4. Site Plan Historical Sampling Locations
- A-5. Groundwater Contour Map


2968L\0018L\TEMP\2968.0018LTEMP.01.CDR

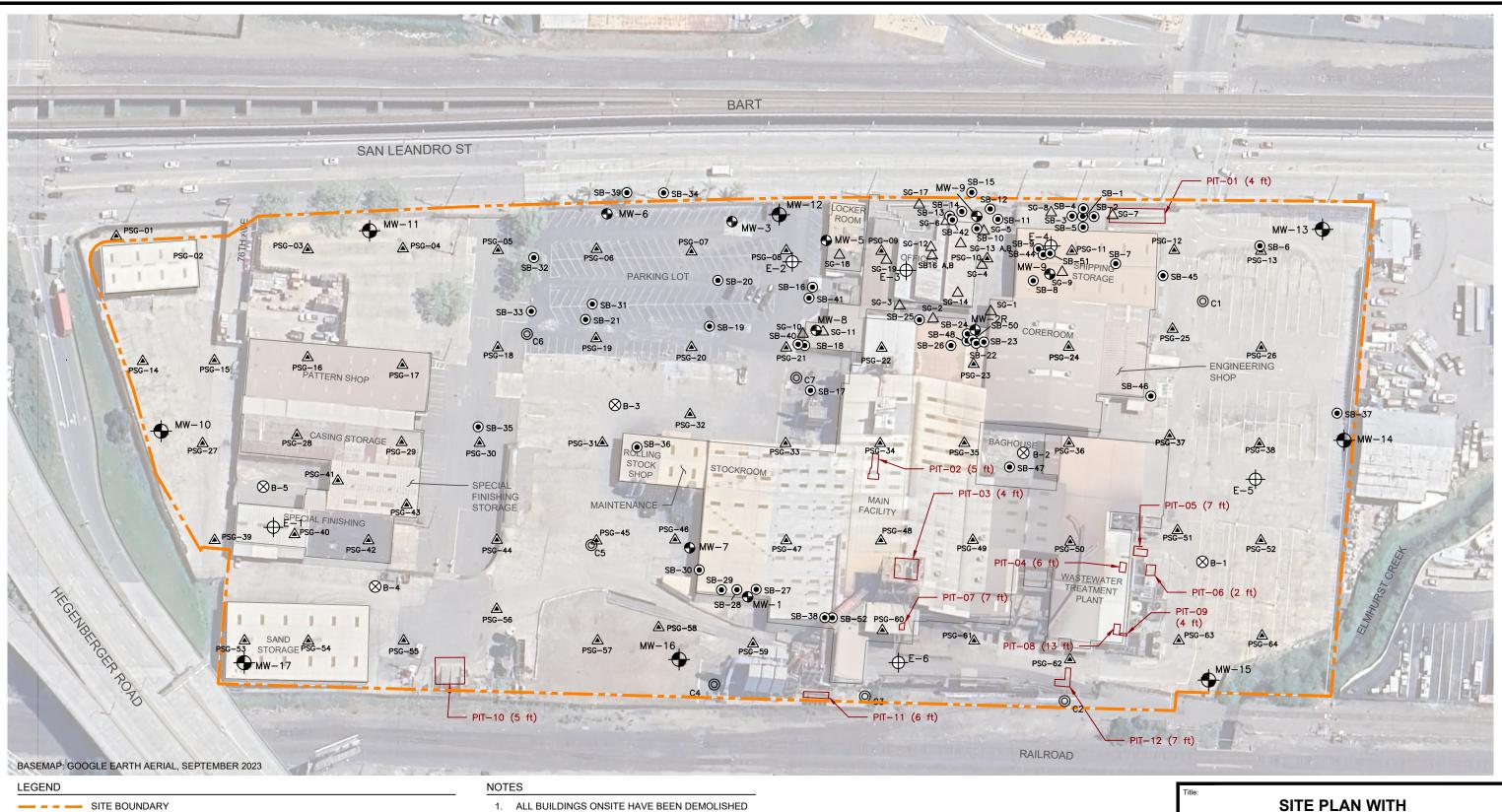


DUKE REALTY FOUNDRY LP

700'

Prepared for:

BASEMAP: GOOGLE EARTH AERIAL. SEPTEMBER 2023


RO

100'

100

DUKE REALTY FOUNDRY LP

Compiled by: PW	Date: 30APR2024	FIGURE
Prepared by: CB	Scale: AS SHOWN	
Project Mgr: HR	Project: 1793.0030S000	A-3
File: 7825 SAN LEANDF	RO ST.DWG	

AS OF NOVEMBER 2023.

- SITE BOUNDARY Φ ENVIRONMENTAL SOIL BORING SAMPLE LOCATIONS (HALEY & ALDRICH, 2002) \otimes GEOTECH SOIL BORING (IWASA, 2022)
- EXISTING GROUNDWATER MONITORING WELLS (ROUX, 2023)
- Ð DECOMMISSIONED GROUNDWATER MONITORING WELL (BSK, 1993; BSK, 2006)
- $oldsymbol{O}$ SOIL BORING (THE SOURCE GROUP, INC., 2008)
- ▲ PASSIVE SOIL GAS SAMPLING LOCATIONS (ROUX, 2023)
- \odot CPT BORINGS (IWASA, 2022)

_ _ _

- Δ SOIL GAS SAMPLING LOCATIONS (SGI, 2007; SGI, 2008; SGI, 2009)
- IDENTIFIABLE PIT LOCATION
 - PIT-0X (DEPTH OF PIT)

SITE PLAN WITH **HISTORICAL SAMPLING LOCATIONS**

7825 SAN LEANDRO STREET OAKLAND, CALIFORNIA

Prepared for

RO

DUKE REALTY FOUNDRY LP

	Compiled by: JO	Date: 30APR2024	FIGURE
	Prepared by: CB	Scale: AS SHOWN	
UA)	Project Mgr: JO	Project: 1793.0030S000	A-4
	File: 7825 SAN LEANDRO ST.DWO	3	

100'

- - SITE BOUNDARY GROUNDWATER MONITORING WELL (ROUX, 2023) +
 - GROUNDWATER ELEVATION CONTOUR
 - INFERRED GROUNDWATER FLOW DIRECTION

- GROUNDWATER ELEVATIONS REPORTED IN FEET ABOVE 1. MEAN SEA LEVEL, NORTH AMERICAN VERTICAL DATUM (NAVD88).
- 2. DASHED INDICATES INFERRED CONTOUR.
- 3. i = APPROXIMATE HYDRAULIC GRADIENT
- 4. GROUNDWATER WELL GAUGING DATA WAS COLLECTED AUGUST 9, 2023.
- 5. ALL BUILDINGS ONSITE HAVE BEEN DEMOLISHED AS OF NOVEMBER 2023.

100

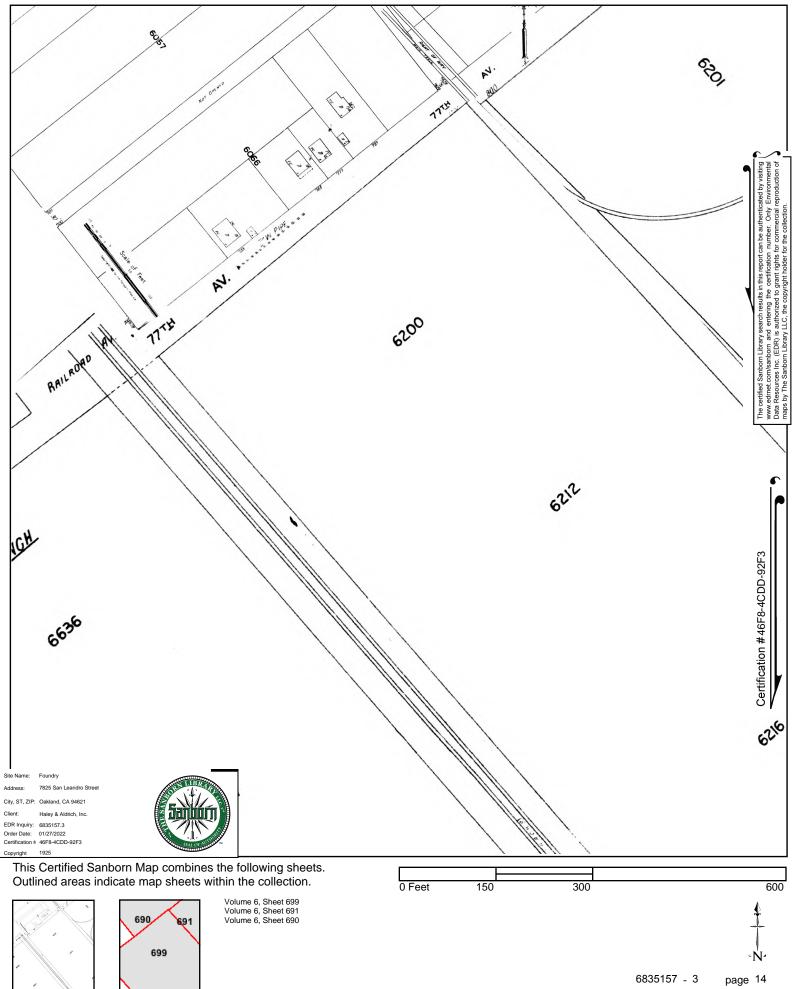
GROUNDWATER CONTOUR MAP

7825 SAN LEANDRO STREET OAKLAND, CALIFORNIA

Prepared for:

DUKE REALTY FOUNDRY LP

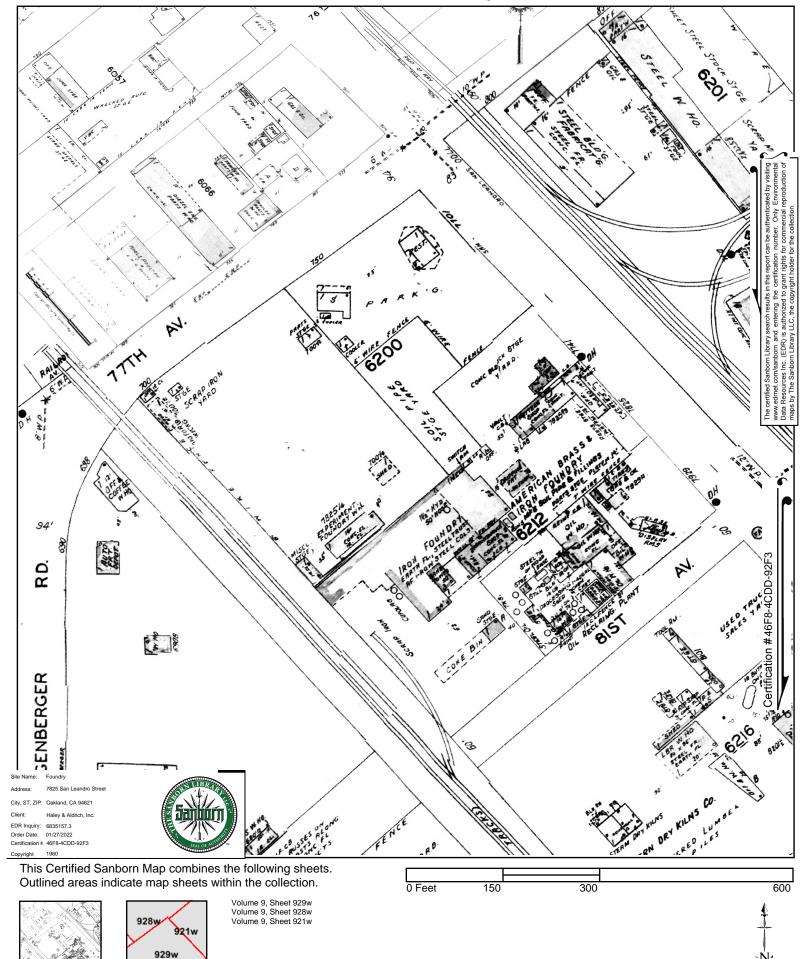
Compiled by: JO	Date: 30APR2024	FIGURE
Prepared by: ET	Scale: AS SHOWN	
Project Mgr: JO	Project: 1793.0030S000	A-5
File: 7825 SAN LEANDRO ST.DWO		


Appendix A ATTACHMENTS

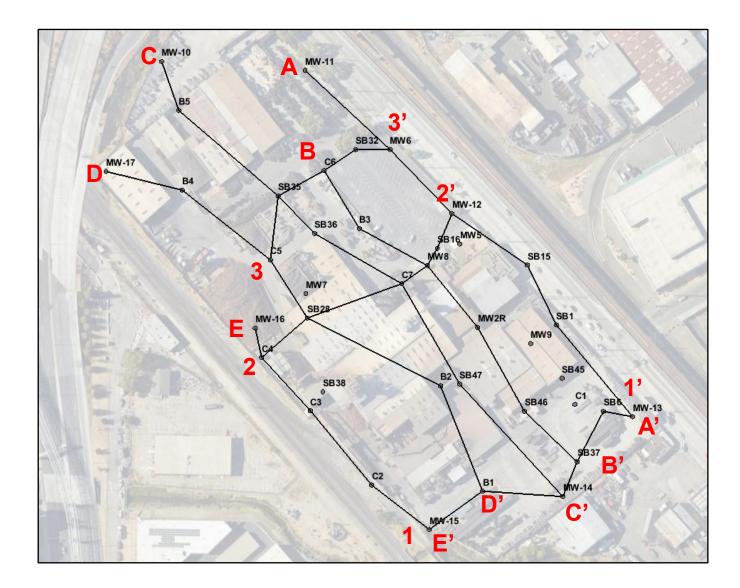
- A. 1925 Sanborn Map
- B. 1960 Sanborn Map
- C. Alameda County Department of Environmental Health Subsurface Modeling
- D. Historical Soil Analytical Results
- E. Historical Soil Vapor Analytical Results
- F. Historical Groundwater Analytical Results

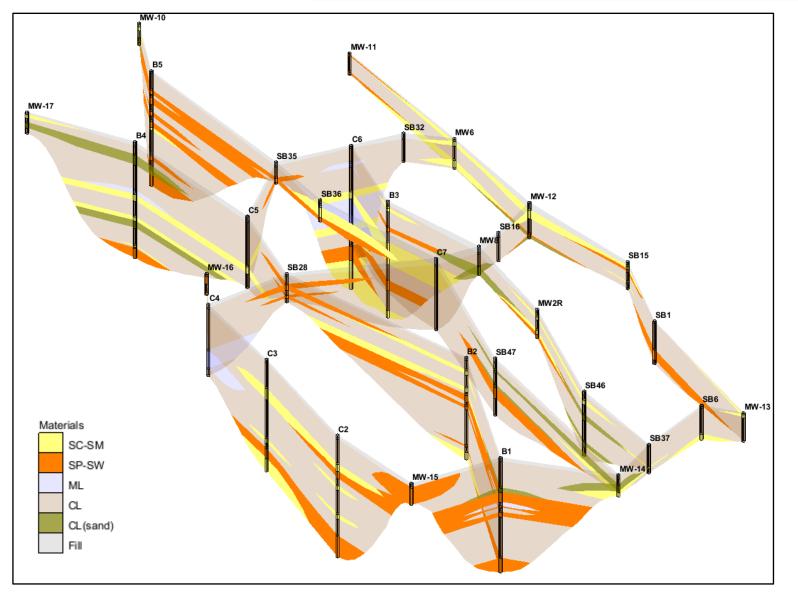
Appendix A ATTACHMENT A

1925 Sanborn Map



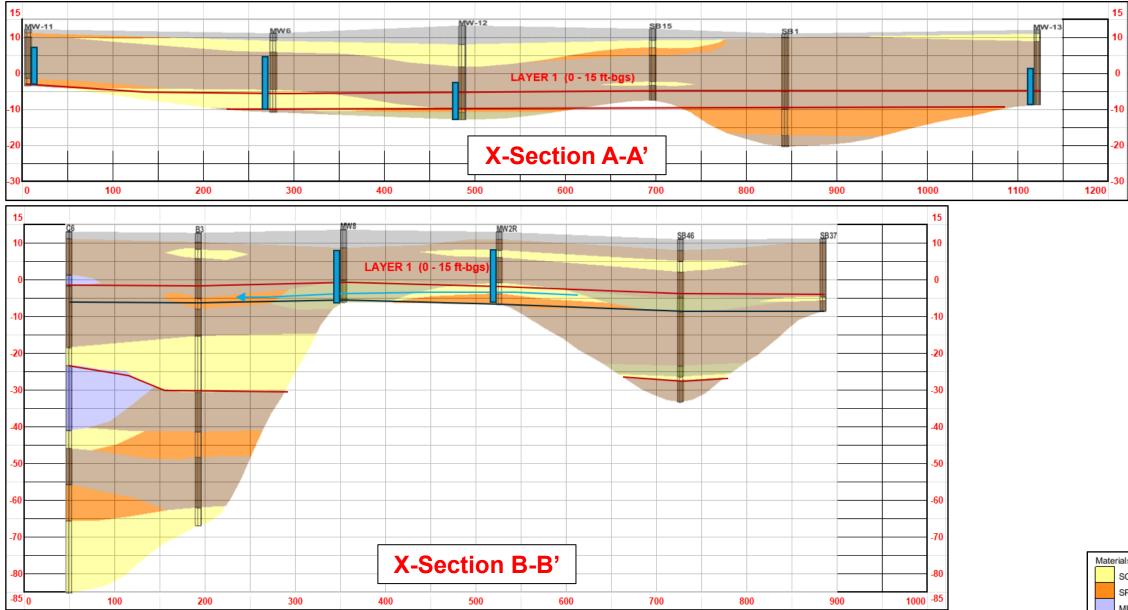
Appendix A ATTACHMENT B

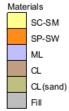

1960 Sanborn Map

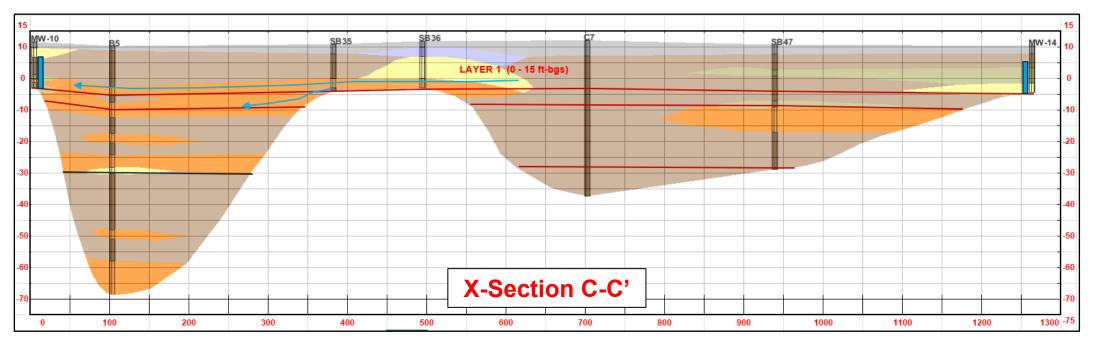


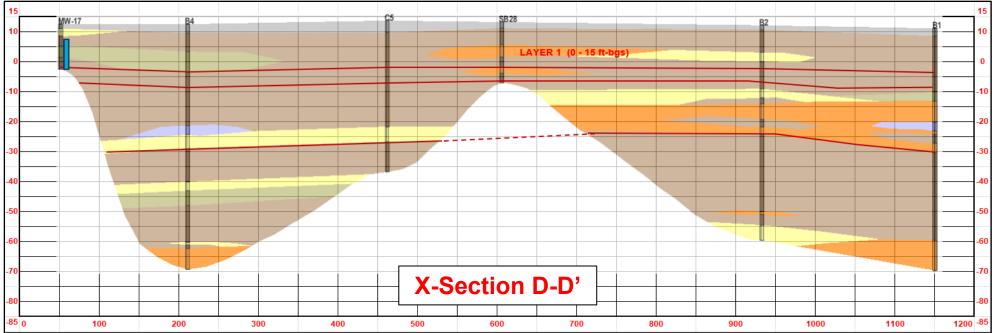
Appendix A ATTACHMENT C

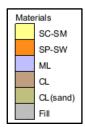
Alameda County Department of Environmental Health Subsurface Modeling

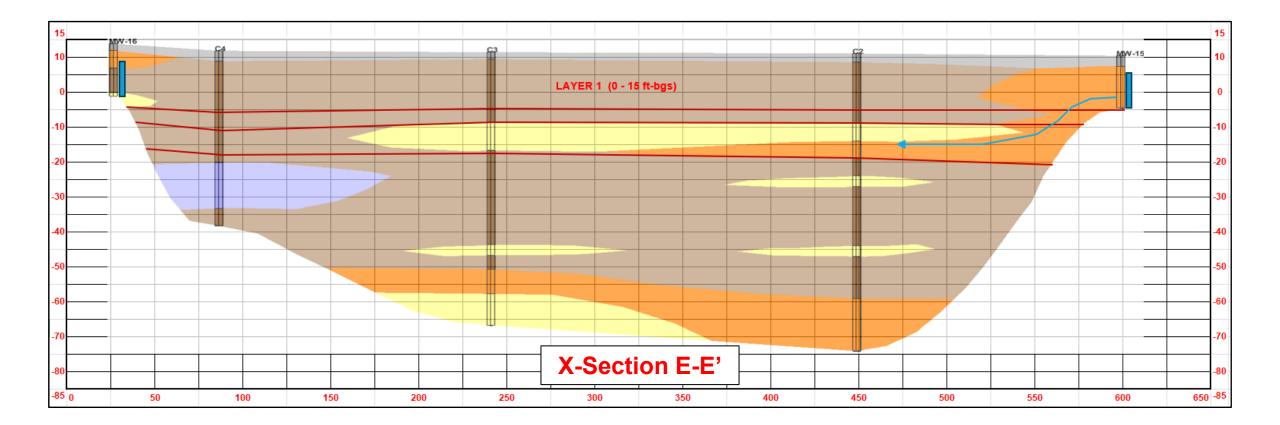


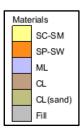

3-D REPRESENTATION OF SAND LAYERS

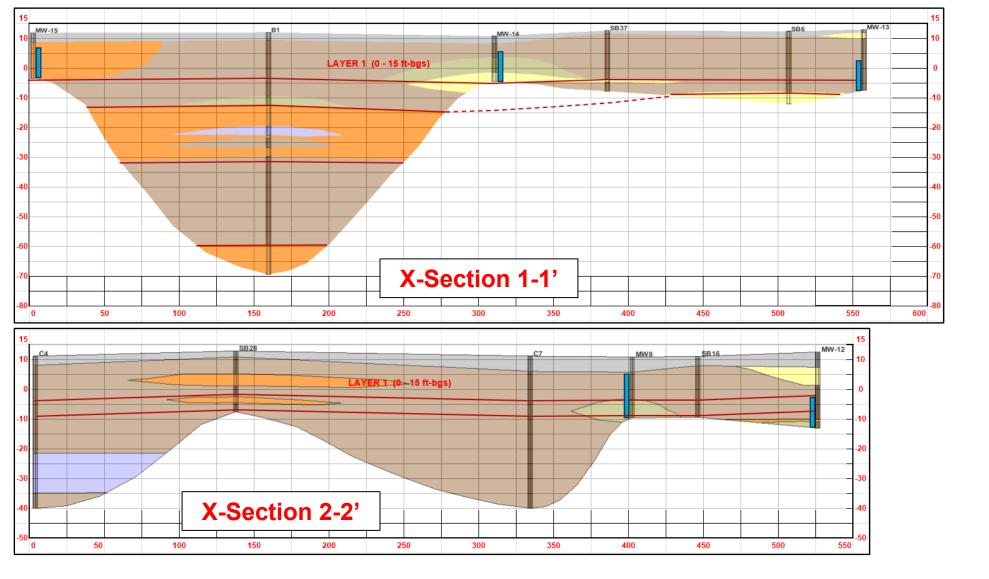


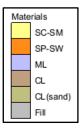

Layer 1 Sand – 0 to 15 ft-bgs

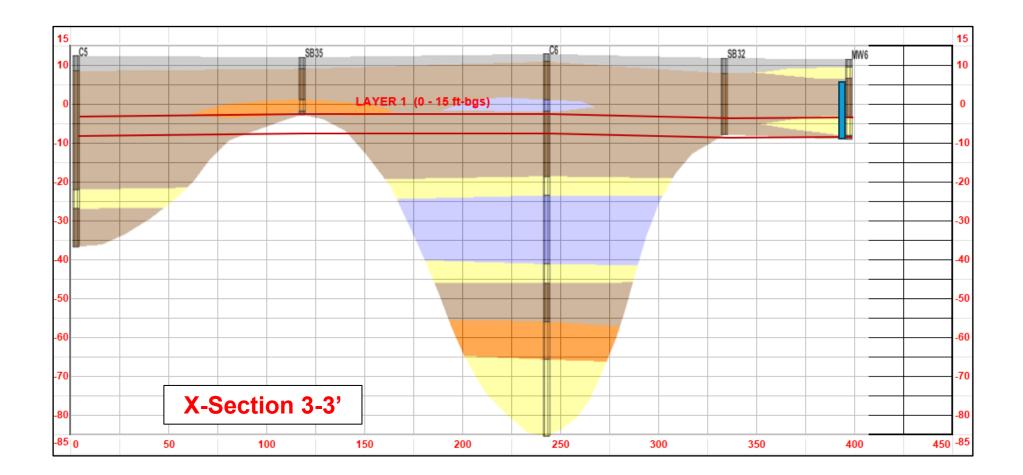

Layer 2 Sand – 20 to 40 ft-bgs

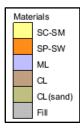


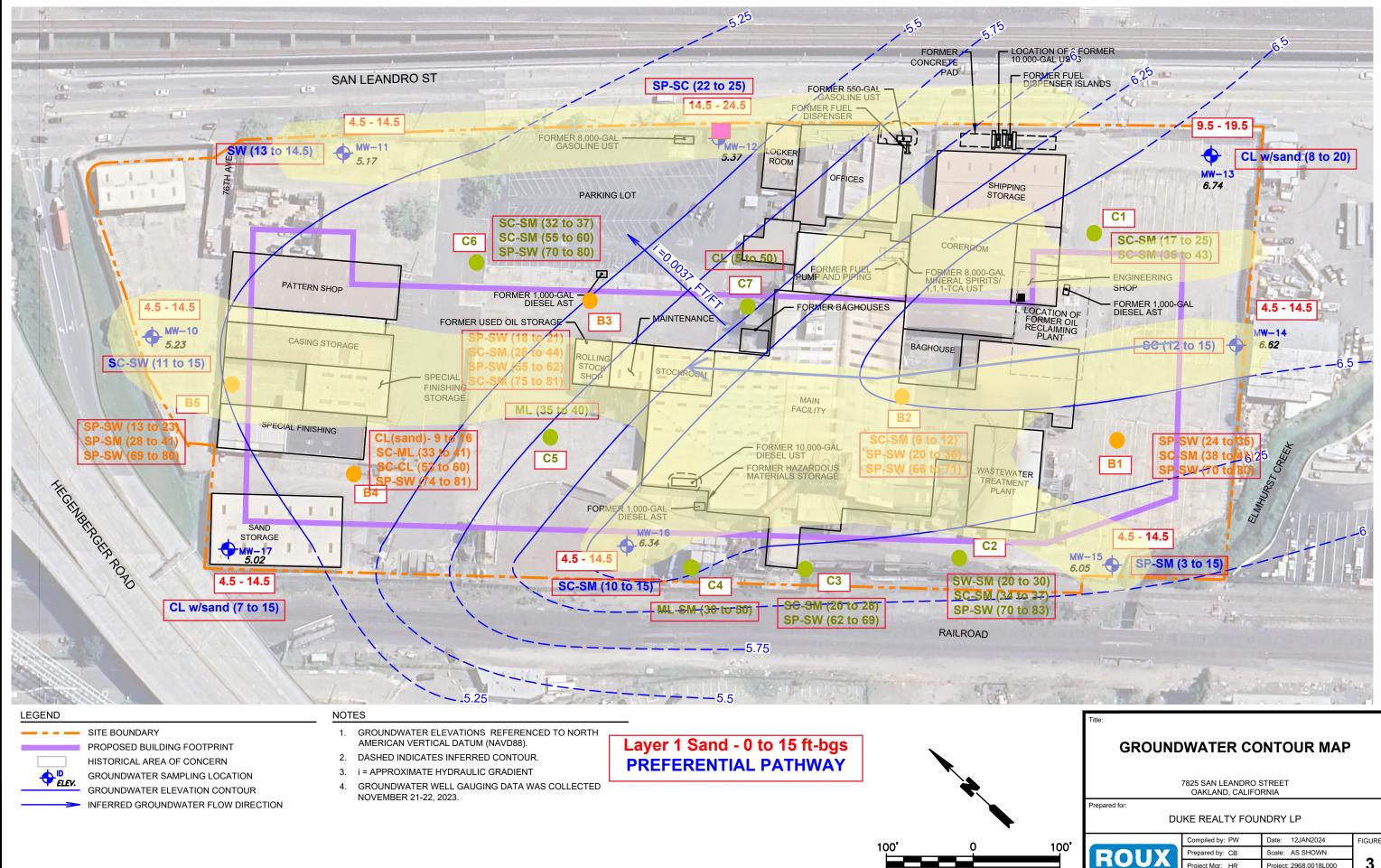


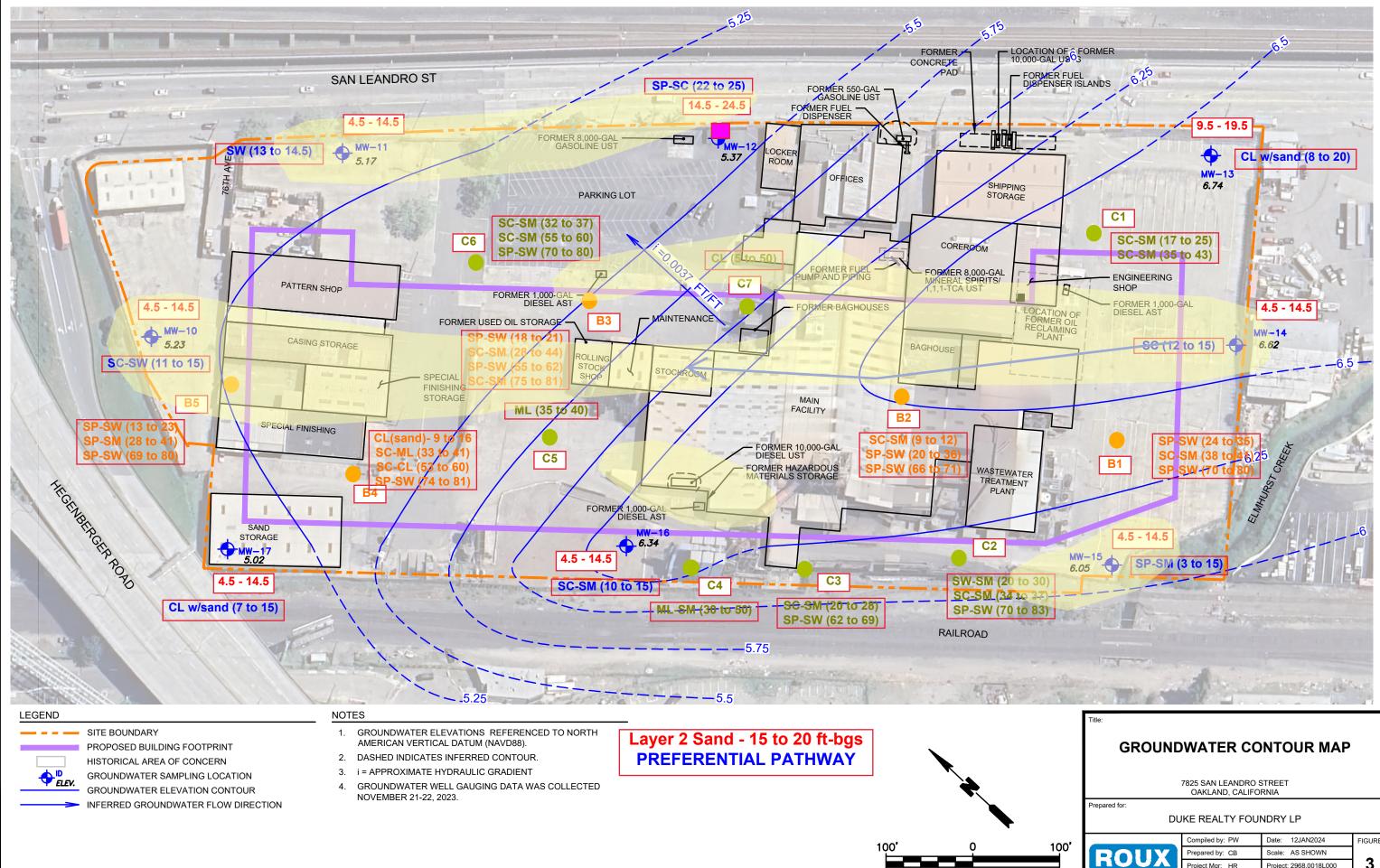


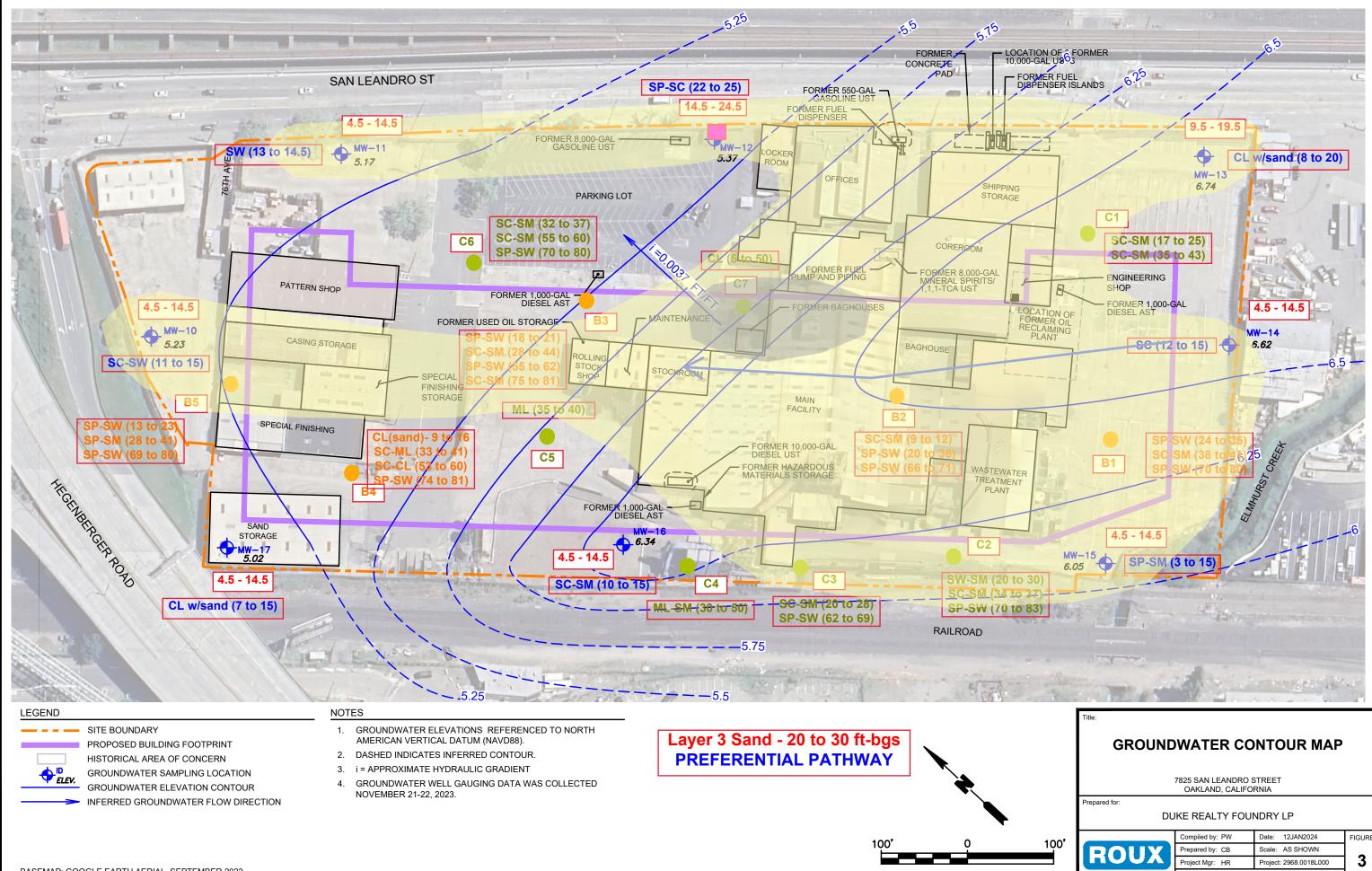












Compiled by: PW	Date: 12JAN2024	FIGUR
Prepared by: CB	Scale: AS SHOWN	_
Project Mgr: HR	Project: 2968.0018L000	3
File: 7825 SAN LEANDF	RO ST.DWG	

	Compiled by: PW	Date: 12JAN2024	FIGURE
	Prepared by: CB	Scale: AS SHOWN	
UUA)	Project Mgr: HR	Project: 2968.0018L000	3
	RO ST.DWG		

	Compiled by: PW	Date: 12JAN2024	FIGURE
	Prepared by: CB	Scale: AS SHOWN	_
100A	Project Mgr: HR	Project: 2968.0018L000	3
	File: 7825 SAN LEANDF	RO ST.DWG	

Appendix A ATTACHMENT D

Historical Soil Analytical Results

TABLE 1A - SOIL RESULTS

	CONSTITUENTS											
Sample Location	Benzene	Toluene	Ethylbenzene	Xylenes								
MW-1 at 11'	ND	ND	ND	ND								
MW-2 at 10.5'	ND	0.039	ND	0.008								
MW-3 at 10'	ND	ND	ND	ND								
MW-4 at 14.5'	6.6	4.1	7.0	17								
MW-4 at 25.5'	ND	ND	ND	ND								

BENZENE, TOLUENE, ETHYLBENZENE AND XYLENES Results in Parts Per Million (ppm)

ND - None Detected

TABLE 1B - SOIL RESULTS

TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE AND DIESEL, TOTAL AND HYDROCARBON OIL AND GREASE, TOTAL ORGANIC LEAD, AND VOLATILE HALOCARBONS

Results in Parts Per Million (ppm)

· · · · · · · · · · · · · · · · · · ·	CONSTITUENTS												
Sample Location	TPH Gasoline	TPH Diesel	Total Oil & Grease	Hydrocarbon Oil & Grease	Total Organic Lead	Volatile Halocarbons							
MW-1, 11'	ND	34				sa sa							
MW-2, 10.5'	63	140	3500	3500		••• ••							
MW-3, 10'	ND		****										
MW-4, 14.5'	2100		**		0.6								
MW-4, 25.5'	ND				ND								

ND - None Detected

-- - Not Tested

Sample ID	Depth	Date	TPHg	TPHd	MTBE	Chloroethane	Benzene	Ethylbenzene	Toluene	Xylenes, Total
Units	(feet)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
RWQCB ESLs	Reside	ntial	100	100	8.4	10	0.12	33	29	31
RWQCB ESLS	Comme	ercial	450	150	8.4	11	0.26	33	29	100
Former Three 10,0	00-Gallon USTs									
SB-01-05	5	10/30/2007	<0.02	65	NA	NA	<0.00028	<0.00028	< 0.00019	<0.00057
SB-01-10	10	10/30/2007	91	2.4	NA	NA	<0.42	<0.34	<0.42	<0.76
SB-01-20	20	10/30/2007	450	8.9	NA	NA	<0.41	4.9	<0.41	<0.75
SB-01-28	28	10/30/2007	0.39	<0.18	NA	NA	<0.00029	<0.00029	< 0.00019	<0.00057
SB-02-03	3	10/30/2007	68	110	NA	NA	<0.42	<0.34	<0.42	<0.75
SB-02-15	15	10/30/2007	410	47	NA	NA	<0.41	7.4	1.5	30
SB-02-20	20	10/30/2007	1400	120	NA	NA	<1	27	<1	62
SB-02-25	25	10/30/2007	0.28	<0.18	NA	NA	<0.00029	<0.00029	<0.00019	<0.00058
SB-03-05	5	10/30/2007	<0.02	<0.18	NA	NA	<0.00028	<0.00028	0.008	<0.00057
SB-03-10	10	10/30/2007	1.3	1.4	NA	NA	0.0049	<0.00028	<0.00019	<0.00056
SB-03-15	15	10/30/2007	1400	660	NA	NA	<0.98	12	<0.98	<1.8
SB-03-25	25	10/30/2007	<0.021	<0.18	NA	NA	< 0.0003	<0.0003	< 0.0002	<0.0006
SB-04-10	10	10/30/2007	<0.02	<0.18	NA	NA	<0.00029	<0.00029	<0.00019	<0.00057
SB-04-15	15	10/30/2007	790	44	NA	NA	<0.11	2.4	<0.074	<0.22
SB-04-20	20	10/30/2007	470	4.3	NA	NA	<0.38	4	<0.38	<0.68
SB-04-24	24	10/30/2007	<0.021	<0.18	NA	NA	< 0.0003	<0.0003	<0.0002	<0.0006
SB-05-05	5	10/31/2007	1.9	2700	NA	NA	< 0.0003	<0.0003	<0.0002	<0.0006
SB-05-10	10	10/31/2007	4.1	<0.18	NA	NA	0.012	<0.0003	< 0.0002	<0.00059
SB-05-20	20	10/31/2007	78	22	NA	NA	<0.42	<0.34	<0.42	<0.76
SB-05-25	25	10/31/2007	<0.02	<0.18	NA	NA	<0.00028	<0.00028	<0.00019	<0.00056
SB-08-15	15	10/31/2007	2.2	13	NA	NA	<0.00029	<0.00029	<0.00019	<0.00057
SB-08-20	20	10/31/2007	1.9	<0.18	NA	NA	<0.00027	<0.00027	<0.00018	<0.00054
SB-09-10	10	10/31/2007	4.6	240	NA	NA	< 0.0003	<0.0003	<0.0002	<0.0006
SB-09-15	15	10/31/2007	160	450	NA	NA	<0.4	<0.33	<0.4	<0.73
Former 550-Gallor	n Gasoline UST									
SB-10-05	5	10/31/2007	320	50	NA	NA	<0.4	<0.33	<0.4	<0.73
SB-10-10	10	10/31/2007	450	38	NA	NA	<0.4	1.4	<0.4	<0.72
SB-10-15	15	10/31/2007	330	82	NA	NA	<0.4	<0.32	<0.4	<0.72
SB-10-20	20	10/31/2007	5.4	5.1	NA	NA	<0.00029	<0.00029	<0.00019	<0.00057
SB-10-25	25	10/31/2007	<0.02	<0.18	NA	NA	<0.00029	<0.00029	<0.00019	<0.00058
SB-11-05	5	11/1/2007	8.6	NA	NA	NA	<0.0006	<0.0006	<0.0004	<0.0012
SB-11-10	10	11/1/2007	71	NA	NA	NA	<0.38	<0.31	<0.38	<0.69
SB-11-20	20	11/1/2007	<0.021	NA	NA	NA	<0.0003	<0.0003	<0.0002	<0.00059
SB-12-05	5	11/1/2007	<0.02	NA	NA	NA	<0.00028	<0.00028	<0.00019	<0.00057

Sample ID	Depth	Date	TPHg	TPHd	MTBE	Chloroethane	Benzene	Ethylbenzene	Toluene	Xylenes, Total
Units	(feet)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
RWQCB ESLs	Reside	ntial	100	100	8.4	10	0.12	33	29	31
RWQCD LOLS	Comme	ercial	450	150	8.4	11	0.26	33	29	100
SB-12-10	10	11/1/2007	<0.02	NA	NA	NA	<0.00028	<0.00028	<0.00019	<0.00057
SB-12-15	15	11/1/2007	250	NA	NA	NA	<0.39	<0.32	<0.39	<0.71
SB-12-25	25	11/1/2007	<0.02	NA	NA	NA	<0.00029	<0.00029	<0.00019	<0.00058
SB-13-05	5	11/1/2007	<0.019	NA	NA	NA	<0.00027	<0.00027	<0.00018	<0.00055
SB-13-10	10	11/1/2007	0.91	NA	NA	NA	< 0.0003	<0.0003	<0.0002	<0.0006
SB-13-15	15	11/1/2007	78	NA	NA	NA	<0.38	<0.31	<0.38	<0.68
SB-13-25	25	11/1/2007	420	NA	NA	NA	<0.42	<0.34	<0.42	<0.75
SB-14-03	3	11/1/2007	<0.02	NA	NA	NA	<0.00028	<0.00028	<0.00019	<0.00056
SB-14-10	10	11/1/2007	<0.02	NA	NA	NA	<0.00029	<0.00029	<0.00019	<0.00058
SB-14-15	15	11/1/2007	30	NA	NA	NA	< 0.00093	<0.00093	< 0.00062	<0.0019
SB-15-05	5	11/1/2007	<0.019	NA	NA	NA	<0.00027	<0.00027	<0.00018	<0.00055
SB-15-10	10	11/1/2007	<0.02	NA	NA	NA	<0.00028	<0.00028	<0.00019	<0.00056
SB-15-15	15	11/1/2007	1100	NA	NA	NA	<0.39	<0.31	<0.39	<0.7
SB-15-19	19	11/1/2007	7.9	NA	NA	NA	< 0.0004	0.019	<0.00026	<0.00079
Former 8,000-Gall	Ion Mineral Spirit	s/ 1,1,1-TCA US	ST							
SB-22-03	3	11/2/2007	0.29	90	<0.00046	<0.00055	< 0.00021	<0.00042	< 0.00039	<0.0015
SB-22-05	5	11/2/2007	<0.02	16	<0.00046	<0.00055	<0.00021	<0.00042	< 0.00039	<0.0015
SB-22-10	10	11/2/2007	0.99	150	<0.00045	<0.00053	<0.00021	<0.00041	<0.00038	<0.0015
SB-22-15	15	11/2/2007	<0.02	<0.18	<0.00047	<0.00055	<0.00021	<0.00042	< 0.0004	<0.0016
SB-23-03	3	11/2/2007	2.1	110	<0.00045	0.055	<0.0002	<0.00041	< 0.00038	<0.0015
SB-23-05	5	11/2/2007	0.45	190	<0.00044	<0.00053	< 0.0002	<0.0004	< 0.00038	<0.0015
SB-23-10	10	11/2/2007	0.25	69	<0.00044	<0.00053	<0.0002	<0.0004	< 0.00037	<0.0015
SB-23-15	15	11/2/2007	<0.02	<0.18	<0.00045	<0.00053	<0.00021	<0.00041	<0.00038	<0.0015
SB-24-03	3	11/2/2007	1.2	170	<0.091	<0.11	<0.042	<0.083	<0.077	<0.31
SB-24-05	5	11/2/2007	1.1	61	<0.00044	0.022	<0.0002	<0.0004	< 0.00037	<0.0015
SB-24-10	10	11/2/2007	0.69	<0.18	<0.00046	<0.00054	<0.00021	<0.00042	< 0.00039	<0.0015
SB-24-20	20	11/2/2007	<0.02	<0.18	<0.00045	<0.00054	<0.00021	<0.00041	<0.00038	<0.0015
SB-26-04	4	11/2/2007	380	5800	<8.9	<11	<4.1	<8.1	<7.6	<30
SB-26-10	10	11/2/2007	72	19	< 0.093	<0.11	<0.043	<0.084	<0.079	<0.31
SB-26-15	15	11/2/2007	<0.02	<0.18	< 0.00046	<0.00055	< 0.00021	<0.00042	< 0.00039	<0.0016

Sample ID	Depth	Date	TPHg	TPHd	MTBE	Chloroethane	Benzene	Ethylbenzene	Toluene	Xylenes, Total
Units	(feet)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
RWQCB ESLs	Residential		100	100	8.4	10	0.12	33	29	31
RWQCB ESLS	Comme	ercial	450	150	8.4	11	0.26	33	29	100
Former 10,000-Ga	llon Diesel UST					-				
SB-27-3	3	11/5/2007	NA	100	NA	NA	NA	NA	NA	NA
SB-27-5	5	11/5/2007	NA	6	NA	NA	NA	NA	NA	NA
SB-27-10	10	11/5/2007	NA	<0.18	NA	NA	NA	NA	NA	NA
SB-27-15	15	11/5/2007	NA	<0.18	NA	NA	NA	NA	NA	NA
SB-28-06	6	11/2/2007	<0.02	64	<0.00056	NA	<0.00028	<0.00028	<0.00019	<0.00056
SB-28-10	10	11/2/2007	<0.019	120	<0.00055	NA	<0.00027	<0.00027	<0.00018	<0.00055
SB-28-15	15	11/2/2007	<0.021	<0.18	NA	NA	< 0.0003	<0.0003	<0.0002	<0.00059
SB-29-6	6	11/5/2007	NA	13	NA	NA	NA	NA	NA	NA
SB-29-10	10	11/5/2007	NA	<0.18	NA	NA	NA	NA	NA	NA
SB-29-15	15	11/5//2007	NA	<0.18	NA	NA	NA	NA	NA	NA
SB-28-20	20	11/2/2007	<0.02	<0.18	NA	NA	<0.00029	<0.00029	<0.00019	<0.00058

Notes:

MTBE - Methyl tert butyl ether

(mg/kg) - milligrams per kilogram

< 0.005 - Not reported at or above laboratory's reporting limit of 0.005 mg/kg - underground storage tank

- Total Petroleum Hydrocarbons as Gasoline TPHg

UST 1,1,1-TCA - 1,1,1-Trichloroethane

TPHd - Total Petroleum Hydrocarbons as Diesel

-TPHg, BTEX, VOCs and fuel oxygenates analyzed using EPA Method 8260B by Test America Laboratories (TAL), Pleasanton, California

-TPHd analyzed using EPA Method 8015M with silica gel cleanup by TAL, Pleasanton, California

RWQCB ESLs - Environmental Screening Levels taken from the California Regional Water Quality Control Board, San Francisco Bay Region document entitled "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," Interim Final November 2007, groundwater is not a current or potential source of drinking water.

-Concentrations in bold exceed commercial ESLs for shallow soil (less than 3 meters).

Sample ID	Depth	Date	Naph-thalene	Acenaphtene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo[a]anthracene	Chrysene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Benzo[a]pyrene	Indeno[1,2,3-cd]pyrene	Benzo[g,h,i]preylene	2-Methylnaphtalene	Dibenz(1,h)anthracene
Units	(feet)		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
RWQCB	Resid	ential	1.3	160	410	40	40	40	500	0.38	40	0.38	0.38	0.038	0.62	35	12	0.062
ESLs	Comm	nercial	2.8	160	1000	40	40	40	1000	1.3	40	1.3	1.3	0.13	2.1	35	12	0.21
Former 8,000-	Gallon Mine	ral Spirits/ 1	,1,1-TCA	UST														
SB-26-4	4	11/2/2007	2100	1300	1300	4500	1300	3100	2400	1100	1300	1000	450	960	460	380	630	140
SB-26-10	10	11/2/2007	0.76	0.65	0.57	2.0	0.42	1.2	0.92	0.38	0.26	0.29	0.090	0.23	0.10	0.084	0.32	<0.067
SB-26-15	15	11/2/2007	<0.067	<0.067	<0.067	0.15	<0.067	0.12	0.085	<0.33	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067

Notes:

(mg/kg) -milligrams per kilogram

<0.067 - Not reported at or above laboratory's reporting limit of 0.067 mg/kg

-Polycyclic Aromatic Hydrocarbons (PAHs) analyzed using EPA Method 8270BC by Test America Laboratories (TAL), Pleasanton, California

RWQCB ESLs - Environmental Screening Levels taken from the California Regional Water Quality Control Board, San Francisco Bay Region document entitled "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," Interim Final November 2007, groundwater is not a current or potential source of drinking water.

-Concentrations in bold exceed commercial ESLs for shallow soil (less than 3 meters)

Sample ID	Depth	Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Units	(feet)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	Resid	ential	6.1	0.38	750	4	1.7	750	40	230	200	1	40	150	10	20	1.2	15	600
RWQCB ESLs	Comm	ercial	40	15	1500	8	7.4	750	80	230	750	1	40	150	10	40	15	190	600
Background			<10	42	410	1.1	5.6	120	25	63	57	0.5	<5	270	5.1	3	10	90	140
Former Three 10	,000-Gallon U	STs																	
SB-01-05	5	10/30/2007	<0.05	4.2	160	0.67	<0.0033	37	6.8	22	19	0.065	1.1	32	<0.11	<0.013	<0.072	31	44
SB-01-10	10	10/30/2007	<0.051	6.8	130	0.66	<0.0033	36	7.8	20	3.8	0.09	<0.042	34	<0.11	<0.013	<0.073	37	30
Former 550-Gallo	on Gasoline U	ST																	
SB-13-05	5	11/1/2007	<0.05	5.5	190	1.7	<0.0033	310	6.1	77	36	<0.00099	7.1	32	7.8	2.7	16	480	320
SB-13-10	10	11/1/2007	<0.05	4	140	0.5	<0.0032	37	11	21	4.6	0.056	<0.041	27	<0.1	<0.013	<0.071	40	32
Former 8,000-Ga	allon Mineral S	pirits/ 1,1,1-T	CA UST																
SB-22-05	5	11/2/2007	<0.053	4.3	150	<0.0036	<0.0035	40	12	22	5	0.058	<0.044	30	<0.11	<0.014	<0.076	44	36
SB-22-10	10	11/2/2007	<0.05	14	180	0.59	<0.0032	48	18	42	130	0.11	2.6	42	<0.1	<0.013	<0.071	48	110
SB-24-20	20	11/2/2007	<0.047	2.6	300	<0.0032	<0.0031	35	13	23	5	<0.00096	<0.039	41	<0.099	<0.012	<0.068	30	37
SB-26-10	10	11/2/2007	<0.051	5.8	100	0.59	<0.0033	53	17	34	4.9	0.06	<0.042	67	<0.11	<0.013	<0.073	72	100
SB-26-15	15	11/2/2007	<0.05	2.2	120	0.54	<0.0032	35	7.9	18	4	0.053	<0.041	44	<0.1	<0.013	<0.071	31	35
SB-26-04	4	11/2/2007	3.1	13	19	<0.0034	<0.0033	130	10	240	28	<0.001	19	87	<0.11	<0.013	<0.073	35	57
Former 10,000-G	allon Diesel U	IST																	
SB-28-06	6	11/2/2007	2.4	3.9	330	0.68	3.4	31	3	60	970	0.11	3.6	15	<0.1	<0.013	<0.071	12	550
SB-28-10	10	11/2/2007	<0.053	10	130	<0.0035	<0.0034	11	5.4	21	110	0.51	<0.044	11	<0.11	<0.014	<0.075	22	120

Notes:

(mg/kg) -milligrams per kilogram

<0.0033 - Not reported at or above laboratory's reporting limit of 0.0033 mg/kg

UST - underground storage tank

1,1,1-TCA - 1,1,1-Trichloroethane

-CAM 17 Metals analyzed using EPA Method 6010B/7471A by Test American Laboratories (TAL), Pleasanton, California

RWQCB ESLs - Environmental Screening Levels taken from the California Regional Water Quality Control Board, San Francisco Bay Region document entitled "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," Interim Final November 2007, groundwater is not a current or potential source of drinking water.

-Concentrations in bold exceed commercial ESLs for shallow soil (less than 3 meters).

-Background data obtained from Lawrence Berkeley National Laboratory Environmental Restoration Program, Soil Management Plan, 2006.

Sample ID	Depth	Date	ТРН	рнат	Benzene	lsopropylbenzene	n-butylbenzene	sec-butylbenzene
Units	(feet)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
RWQCB ESLs	Residential		180	180	2	NE	NE	NE
RWQCB ESLS	Com	mercial	180	180	2	NE	NE	NE
Former Three 10,	000-Gallon	USTs						
SB-44-15	15	7/11/2008	150	580	0.11	0.45	0.47	0.27
SB-44-25	25	7/11/2008	0.22	1.1	<1.0	<0.80	<0.78	<0.68
SB-45-5	5	7/10/2008	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0
SB-45-15	15	7/10/2008	66	<1.0	<250	<250	<250	<250
SB-45-20	20	7/10/2008	360	<1.0	<250	<250	0.25	<250
Former 550-Gallo	on Gasoline	UST						
SB-42-40	40	7/9/2008	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0

Notes:

(mg/kg) - all concentrations expressed in milligrams per kilogram (mg/Kg)

TPHg - Total Petroleum Hydrocarbons as Gasoline

TPHd - Total Petroleum Hydrocarbons as Diesel

-VOCs analyzed using EPA Method 8260B by Advanced Technology Laboratories (ATL), Signal Hill, California

-TPHg and TPHd analyzed using EPA Method 8015M with silica gel cleanup by Advanced Technology Laboratories (ATL), Signall Hill, California

RWQCB ESLs - Environmental Screening Levels taken from the California Regional Water Quality Control Board, San Francisco Bay Region document entitled "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," Interim Final November 2007, updated May 2008, Residential and Commercial/Industrial land use.

-Concentrations in bold exceed commercial ESLs for deep soil (greater than 3 meters).

Appendix A ATTACHMENT E

Historical Soil Vapor Analytical Results

Sample ID	Depth	Sample Matrix	PCE	Chloroethane	Benzene	Toluene	Ethylbenzene	m,p-xylene
Units	(feet)		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
RWQCB	Res	idential	0.41	21	0.084	63	210	21
ESLs	Com	nmercial	1.4	58	0.28	180	580	58
Former 8,000	-Gallon Minera	al Spirits/ 1,1,1-TC	A UST					
SG-1	5	Soil	<0.10	0.2	0.31	<0.20	<0.10	<0.20
SG-2	5	Soil	<0.10	<0.10	<0.080	<0.20	<0.10	<0.20
SG-3	5	Soil	<0.10	<0.10	<0.080	<0.20	<0.10	<0.20
Former 550-G	allon Gasolin	e UST						
SG-4	5	Soil	0.12	<0.10	0.11	0.22	2	0.63
SG-5	5	Soil	<0.84	<0.84	0.96	<0.84	13	3.4
SG-6	5	Soil	<0.10	<0.10	<0.080	<0.20	0.27	<0.20
Former Three	10,000-Gallor	n USTs						
SG-7	5	Soil	<0.10	<0.10	<0.080	<0.20	<0.10	<0.20
SG-8	5	Soil	<0.41	<0.41	<0.33	<0.41	1.7	0.48
SG-9	5	Soil	<0.10	<0.10	<0.080	<0.20	0.56	<0.20
Parking Lot A	rea							
SG-10	5	Soil	<0.10	<0.10	0.21	0.26	0.28	<0.20

Notes:

(µg/I) - micrograms per liter

PCE - tetrachloroethylene

<0.20 - Not reported at or above laboratory's reporting limit of 0.20 µg/L

1,1,1-TCA - 1,1,1-Trichloroethane

- Samples analyzed using EPA Method 8260B by Airtoxics Laboratories, Folsom, California

RWQCB ESLs - Environmental Screening Levels taken from the California Regional Water Quality Control Board, San Francisco Bay Region document entitled "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," Interim Final November 2007, commercial use ESLs.

UST - underground storage tank

Sample ID	Purge Volume	Depth (feet bgs)	Date	PCE	TCE	1,1-DCE	1,1,-DCA	Benzene	Toluene	Vinyl Chloride	m,p-xylene
RWQCB		Residential		0.41	1.2	42	1.5	0.084	63	0.031	21
ESLs		Commercial		1.4	4.1	120	5.1	0.28	180	0.1	58
SG-11	1	5.0	7/7/08	<0.1	<0.1	0.15	0.19	<0.08	0.23	<0.05	<0.2
SG-11	3	5.0	7/7/08	<0.1	<0.1	0.16	0.19	<0.08	<0.1	<0.05	<0.2
SG-11	7	5.0	7/7/08	<0.1	<0.1	0.16	0.19	<0.08	<0.1	<0.05	<0.2
SG-12	1	5.0	7/7/08	<0.1	<0.1	<0.1	<0.1	<0.08	0.27	2.1	<0.2
SG-12 (D)	1	5.0	7/7/08	<0.1	<0.1	<0.1	<0.1	<0.08	0.32	2.9	<0.2
SG-13A	1	Sub Slab	7/7/08	<0.1	<0.1	<0.1	<0.1	<0.08	<0.1	<0.05	<0.2
SG-13B	1	5.0	7/7/08	<0.1	<0.1	<0.1	<0.1	<0.08	<0.1	<0.05	<0.2
SG-14	1	5.0	7/7/08	<0.1	<0.1	<0.1	<0.1	<0.08	<0.1	<0.05	<0.2
SG-16A	1	Sub Slab	7/7/08	3.2	0.14	<0.1	<0.1	<0.08	<0.1	<0.05	0.22
SG-16B	1	5.0	7/7/08	0.58	<0.1	<0.1	<0.1	0.17	<0.1	3.7	<0.2

Notes:

<0.10

- all concentrations expressed in micrograms per liter (µg/l)

(D) - Duplicate sample

feet bgs - feet below ground surface

PCE - Tetrachloroethene

TCE - Trichloroethene

1,1 - DCE - 1,1 - Dichloroethene

1,1 - DCA - 1,1 - Dichloroethane

1,1,1-TCA - 1,1,1-Trichloroethane

- Not reported at or above laboratory's reporting limit of 0.10 μ g/L

RWQCB ESLs - Environmental Screening Levels taken from the California Regional Water Quality Control Board, San Francisco Bay Region document entitled "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," Interim Final November 2007, updated May 2008, Residential and Commercial/Industrial Land Use.

- Samples analyzed using EPA Method 8260B by Transglobal Environmental Geochemistry, Rancho Cordova, California

- Concentrations in bold exceed ESLs for indoor air vapor intrusion concerns - Commercial/Industrial Use

Table 1 Summary of Soil Gas Sample Results **AB&I** Foundry

7825 San Leandro Street Oakland, California

Sample ID	Purge Volume	Depth (feet bgs)	Date	PCE	Benzene
RWQCB ESLs		Commercial		1.4	0.28
SG-17	1	1.5	3/13/09	<0.1	<0.08
SG-18	1	1.5	3/13/09	<0.1	0.15
SG-18 (D)	1	1.5	3/13/09	<0.1	0.15
SG-19	1	1.5	3/13/09	3.1	<0.08
SG-19 (D)	1	1.5	3/13/09	3	<0.08

Notes: μg/L

(D)

- all concentrations expressed in micrograms per liter (µg/l)

- Duplicate sample

- feet below ground surface feet bgs

- Tetrachloroethene

PCE < 0.10

- Not reported at or above laboratory's reporting limit of 0.10 μ g/L RWQCB ESLs - Environmental Screening Levels taken from the California Regional Water Quality Control Board, San Francisco Bay Region document entitled "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," Interim Final November 2007, updated May 2008, Residential and Commercial/Industrial Land Use.

> - Samples analyzed using EPA Method 8260B by Transglobal Environmental Geochemistry, Rancho Cordova, California

- Concentrations in bold exceed ESLs for indoor air vapor intrusion concerns -Commercial/Industrial Use

Appendix A ATTACHMENT F

Historical Groundwater Analytical Results

TABLE 2A - WATER RESULTS

BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES Results in Parts Per Billion (ppb)

		CONSTI	TUENTS	1997 - 1997 -
Sample Location (Action Level)	Benzene (1) ₁	Toluene (100) ₂	Ethylbenzene (680) ₁	Xylenes (1750) ₁
MW-1	0.6	ND	ND	ND
MW-2	ND	0.8	ND	ND
MW-3	ND	ND	ND	ND
MW-4	1.0	2.0	7.6	19

ND - None Detected

1

- California Department Of Health Services Drinking Water Standard, Revised 10/23/91
- 2 California DOHS Action Level, 7/1/92

TABLE 2B - WATER RESULTS

TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE AND DIESEL, TOTAL AND HYDROCARBON OIL AND GREASE, TOTAL LEAD, AND VOLATILE HALOCARBONS Results in Parts Per Billion (ppb)

Volatile Halocarbons (Determined by Compound)	Total Lead (50)	Hydrocarbon Oil & Grease (NA)	Total Oil & Grease (NA)	TPH Diesel (NA)	TPH Gasoline (NA)	Sample Location (Action Level)
				830		MW-1
0.6 - Bromoform(100) ₂ 5 - Chloroethane(NA) 1.7 - 1,1-Dichloroethane(0.5) 6.7 - 1,1,1-Trichloroethane(200) ₁		ND	1.0		920	MW-2
					ND	MW-3
	0.058	/			1800	MW-4

ND - None Detected

NA - Not Applicable

-- - Not Tested

1

- California Department of Health Services Drinking Water Standards, Revised 10/23/91.

2 - EPA Drinking Water Standard, Revised 7/1/92

· is this ppm yes!

Table 6Summary of Groundwater Sample Results - OrganicsAB&I Foundry7825 San Leandro Street

Oakland,	California
----------	------------

Sample ID	Depth	Date	ТРНд	ТРНа	MTBE	TBA	1,1 - DCA	1,1 - DCE	cis 1,2-DCE	Benzene	Chloro- ethane	1,2- Dichloro- benzene	Ethyl- benzene	Naph- thalene	Toluene	1,1,1-TCA	TCE	Vinyl chloride	Xylenes, Total
Units	(feet)		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
RWQCB ESLs ¹			5,000	2,500	1,800	50,000	1,000	6,300	6,200	540	160	100	300	210	400	50,000	530	3.8	5,300
RWQCB ESLs ²			100	100	5	NE	5	6	6	1	12	10	30	17	40	200	5	0.5	20
Former Three 10,0	00-Gallor	n USTs																	
MW-9	5-20	10/25/2007	1300	120	<0.50	15	<0.50	<0.50	<0.5	89	<10	<0.50	6	<1	2	<5	<0.50	<5	<1
SB-01-GW24.5	24.5	10/30/2007	180	51	<0.13	<2.3	<0.059	<0.054	<0.11	0.75	<0.21	<0.05	3.2	1.5	0.67	<0.046	<0.063	<0.04	1.8
SB-06-GW23	23	10/31/2007	<28	110	<0.13	<2.3	<0.059	<0.054	<0.11	<0.035	<0.21	<0.05	<0.039	<0.096	0.52	<0.046	< 0.063	<0.04	<0.49
SB-07-GW17	17	10/31/2007	2900	610	<0.13	<2.3	<0.059	<0.054	<0.11	37	<0.21	<0.05	19	17	<0.049	<0.046	< 0.063	<0.04	1.4
SB-7-GW17 (D)	17	10/31/2007	4600	450	NA	NA	<0.059	<0.054	<0.11	45	<0.21	<0.05	17	16	<0.049	<0.046	< 0.063	<0.04	1.7
SB-08-GW17	17	10/31/2007	19000	6100	<6.3	<2.3	<0.59	<0.054	<1.1	<0.35	<2.1	<0.5	22	15	<0.49	<0.46	<0.63	<0.4	<4.9
SB-09-GW17	17	10/31/2007	11000	27000	<6.3	<2.3	<0.059	<0.054	<0.11	25	<0.21	1.5	4.3	2.7	9.8	<0.046	2.1	<0.04	25
SB-37-GW16.5	16.5	11/27/2007	<50	<50	9.1	<5.0	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<1.0	0.89	<0.50	<0.50	<0.50	<1.0
SB-37-GW16.5 (D)	16.5	11/27/2007	NA	NA	11	NA	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<1.0	0.91	<0.50	<0.50	<0.50	<0.50
Former 550-Gallon	n Gasoline	e UST		2			_	_		_							_		
MW-4	5-20	10/24/2004	<50	<50	<0.50	<5.0	< 0.50	<0.50	<0.5	<5	<10	<0.50	<5	<1	<5	<5	<0.50	<5	<1
SB-12-GW20	20	11/2/2007	2300	860	0.57	<2.3	<0.059	<0.054	<0.11	3.3	<0.21	<0.05	16	1.6	1.8	<0.046	< 0.063	<0.04	4.4
SB-14-GW13	13	11/1/2007	1600	80	<0.25	<2.3	<0.059	<0.054	<0.11	1.1	<0.21	<0.05	2.8	< 0.096	1.6	<0.046	< 0.063	<0.04	7.3
Former 8,000-Gallo	on Minera	al Spirits/ 1.1.1	-TCA UST																
MW-2R	5-20	10/25/2007	150	<50	<0.50	<5.0	<0.50	<0.50	<0.50	<5	<10	<0.50	<5	<1	<5	<5	<0.50	<5	<1
SB-22-GW10	10	11/2/2007	1300	87	<0.13	<2.3	< 0.059	< 0.054	<0.11	< 0.035	<0.21	< 0.05	< 0.039	< 0.096	<0.049	< 0.046	< 0.063	< 0.04	<0.49
SB-25-GW10	10	11/2/2007	1500	1200	<0.13	<2.3	<0.3	<0.27	< 0.53	6.4	<1.1	<0.25	50	<0.48	200	<0.23	< 0.32	<0.2	410
SB-26-GW10	10	11/2/2007	3100	37000	<0.13	<2.3	<1.2	<1.1	<2.1	<0.7	<4.2	<1	17	630	<0.98	<0.92	<1.3	<0.8	<9.8
Parking Lot Area																			
MW-3	5-20	10/24/2007	540	<50	<0.50	<5.0	180	680	5	<5	<10	<0.50	<5	<1	<5	13	<0.50	7.5	<1
MW-5	5-20	10/25/2007	<50	<50	< 0.50	<5.0	2	1.5	1.5	<5	<10	< 0.50	<5	<1	<5	<5	< 0.50	<5	<1
MW-6	5-20	10/24/2007	<50	110	< 0.50	<5.0	< 0.50	< 0.50	< 0.50	<5	<10	< 0.50	<5	<1	<5	<5	< 0.50	<5	<1
MW-8	5-20	10/25/2007	1200	<50	< 0.50	<5.0	1600	1600	< 0.50	<5	290	< 0.50	<5	<1	<5	1700	< 0.50	<5	<1
SB-16-GW15	15	11/1/2007	<28	<30	<0.13	<2.3	29	31	<0.11	< 0.035	<0.21	< 0.05	< 0.039	<0.096	< 0.049	16	0.56	< 0.04	<0.49
SB-16-GW15 (D)	15	11/1/2007	220	<30	<0.13	<2.3	26	35	<0.11	< 0.035	<0.21	< 0.05	< 0.039	< 0.096	< 0.049	18	0.63	< 0.04	<0.49
SB-17-GW15	15	11/1/2007	540	160	NA	NA	170	740	<2.1	<0.7	<4.2	<1	<0.78	<1.9	<0.98	<0.92	<1.3	14	<9.8
SB-18-GW05	5	11/5/2007	330	160	<0.13	<2.3	250	660	<2.1	<0.7	28	<1	<0.78	<1.9	<0.98	310	<1.3	<0.8	<9.8
SB-19-GW15	15	11/5/2007	340	<30	<0.13	<2.3	200	880	5	< 0.35	<2.1	<0.5	<0.39	<0.96	<0.49	<0.46	<0.63	10	<4.9
SB-20-GW15	15	11/5/2007	330	<30	<0.13	<2.3	200	950	<2.1	<0.7	<4.2	<1	<0.78	<1.9	<0.98	<0.92	<1.3	11	<9.8
SB-32-GW15	15	11/27/2007	NA	NA	<5.0	NA	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50	0.62	<1.0	1.9	<0.50	<0.50	<0.50	3.3
SB-33-GW15	15	11/27/2007	NA	NA	<5.0	NA	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50	0.61	<1.0	3.0	<0.50	<0.50	<0.50	3.4
SB-34-GW15	15	11/27/2007	NA	NA	<10	NA	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	2.2	<1.0	<1.0	<1.0	2.4
SB-35-GW11.5	11.5	11/27/2007	NA	NA	<5.0	NA	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<1.0
SB-36-GW11.5	11.5	11/26/2007	NA	NA	<5.0	NA	0.53	<0.50	<0.50	<0.50	1.6	<0.50	<0.50	<1.0	<0.50	< 0.50	< 0.50	<0.50	<1.0
Former 10,000-Gal	llon Diese											-	-	-					
MW-1	5-20	10/25/2007	<50	450	<0.50	<5.0	<0.50	<0.50	<5	<5	<10	<0.50	<5	<1	<5	<5	<0.50	<5	<1
MW-7	5-20	10/25/2007	<50	370	< 0.50	<5.0	< 0.50	<0.50	<5	<5	<10	<0.50	<5	<1	<5	<5	< 0.50	<5	<1
SB-28-GW15	15	11/2/2007	<28	260	<0.13	<2.3	< 0.059	< 0.054	<0.11	< 0.035	<0.21	<0.05	<0.039	<0.096	0.52	< 0.046	< 0.063	< 0.04	<0.49
SB-29-GW15	15	11/5/2007	<28	150	<0.13	<2.3	< 0.059	< 0.054	<0.11	< 0.035	<0.21	< 0.05	< 0.039	<0.096	<0.049	<0.046	< 0.063	<0.04	<0.49
u	-		-		-	-			1									-	· · · · ·

Table 6Summary of Groundwater Sample Results - OrganicsAB&I Foundry7825 San Leandro Street

Oakland, California

Sample ID	Depth	Date	ТРН9	ТРН	MTBE	TBA	1,1 - DCA	1,1 - DCE	cis 1,2-DCE	Benzene	Chloro- ethane	1,2- Dichloro- benzene	Ethyl- benzene	Naph- thalene	Toluene	1,1,1-TCA	тсе	Vinyl chloride	Xylenes, Total
Units	(feet)		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
RWQCB ESLs ¹			5,000	2,500	1,800	50,000	1,000	6,300	6,200	540	160	100	300	210	400	50,000	530	3.8	5,300
RWQCB ESLs ²			100	100	5	NE	5	6	6	1	12	10	30	17	40	200	5	0.5	20
SB-30-GW10	10	11/2/2007	<28	74	<0.13	<2.3	<0.059	<0.054	<0.11	<0.035	<0.21	<0.05	<0.039	<0.096	0.64	<0.046	<0.063	<0.04	1.5

Notes:

(µg/L) - micrograms per Liter

(D) - duplicate sample

1,1,1-TCA - 1,1,1-Trichloroethane

UST - Underground Storage Tank

TPHg - Total Petroleum Hydrocarbons as Gasoline

TPHd - Total Petroleum Hydrocarbons as Diesel

MTBE - Methyl tert butyl ether

TBA - Tert butyl alcohol

cis-1,2-DCE - Cis-1,2-dichloroethylene

<0.50 - Not reported at or above laboratory's reporting limit of 0.50 µg/L

NA - Analyte not sampled for

-TPHg, BTEX, VOCs and fuel oxygenates analyzed using EPA Method 8260B by Test America Laboratories (TAL), Pleasanton, California

-TPHd analyzed using EPA Method 8015M with silica gel cleanup by TAL, Pleasanton, California

-Concentrations in bold exceed ESLs for groundwater as a current or potential source of drinking water

RWQCB ESLs¹ '- Environmental Screening Levels taken from the California Regional Water Quality Control Board, San Francisco Bay Region document entitled "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," Interim Final November 2007, groundwater is not a current or potential source of drinking water.

RWQCB ESLs² '- Environmental Screening Levels taken from the California Regional Water Quality Control Board, San Francisco Bay Region document entitled "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," Interim Final November 2007, groundwater is a current or potential source of drinking water.

Table 4 Summary of Groundwater Monitoring Well Sample Results AB&I Foundry 7825 San Leandro Street

Oakland, California

Sample ID	Depth	Date	ТРН9	ТРНа	PCE	1,1 - DCA	1,1 - DCE	1,2-DCA	trans 1,2-DCE	cis 1,2-DCE	Benzene	Chloroethane	Ethylbenzene	Toluene	1,1,1-TCA	TCE	Vinyl chloride	Naphthalene	Xylenes, Total
Units	(feet bgs)		(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)
RWQCB ESLs ¹			NE	NE	420	3,400	18,000	690	19,000	17,000	1,800	2,700	170,000	530,000	360,000	11,000	13.0	11,000	160,000
RWQCB ESLs ²			NE	NE	120	1,000	6,300	200	6,700	6,200	540	820	170,000	350,000	130,000	530	3.8	3,200	160,000
MISC																			
MW-1		6/13/2008	<50	160	<0.50	0.40	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1
MW-2R		6/13/2008	98	<50	<0.50	<0.50	0.68	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1
MW-3		6/12/2008	*510	<50	<0.50	170	910	<0.50	0.54	7.9	0.65	<0.50	<0.50	<0.50	<0.50	0.85	13	<0.50	<1
MW-4		6/12/2008	<50	<50	<0.50	<0.50	0.73	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1
MW-5		6/12/2008	<50	<50	<0.50	1.1	1.5	<0.50	2	5.1	0.65	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1
MW-6		6/12/2008	<50	54	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1
MW-7		6/13/2008	<50	59	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1
MW-8		6/12/2008	*2100	<50	<8.8	1400	3200	<10	<10	<10	<10	300	<10	<10	2700	0.62	19	<10	<20
MW-8 (D)		6/12/2008	2100	<50	<8.8	1300	3000	<10	<10	<10	<10	310	<10	<10	2500	0.62	19	<10	<20
MW-9		6/12/2008	2900	180	<0.44	<0.50	1.4	<0.50	<0.50	<0.50	180	<0.50	7.6	3	<0.50	<0.50	<0.50	2.1	2.1

Notes:

NE -value not established

feet bgs - feet below ground surface

- Duplicate sample (D)

*510 Reported due to the presence of discrete peaks

TPHg - Total Petroleum Hydrocarbons as Gasoline TPHd

- Total Petroleum Hydrocarbons as Diesel PCE

- Tetrachloroethene
- TCE - Trichloroethene
- 1,1 DCE - 1,1 - Dichloroethene
- 1,1 DCA - 1,1 - Dichloroethane
- 1,1,1-TCA - 1,1,1-Trichloroethane
- 1,2-Dichloroethane 1,2 - DCA
- trans-1,2-DCE - Trans-1,2-dichloroethene
- cis-1,2-DCE - Cis-1,2-dichloroethene

- all concentrations expressed in micrograms per liter (µg/l) <0.50

- Not reported at or above laboratory's reporting limit of 0.50 µg/L

-TPHg, TPHd, and VOCs analyzed using EPA Methods 8015B(M) and 8260B by Advanced Technology Laboratories (ATL), Signal Hill, California -Concentrations in bold exceed ESLs for vapor intrusion concearns - residential land use.

RWQCB ESLs¹ ' - Environmental Screening Levels taken from the California Regional Water Quality Control Board, San Francisco Bay Region document entitled "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," Interim Final November 2007, updated May 2008, commercial land use.

RWQCB ESLs² ' - Environmental Screening Levels taken from the California Regional Water Quality Control Board, San Francisco Bay Region document entitled "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," Interim Final November 2007, updated May 2008, residential land use.

Table 5 Summary of Grab Groundwater Sample Results AB&I Foundry 7825 San Leandro Street Oakland, California

Sample ID	Sampling Method	Depth	Date	ТРНО	ТРН	PCE	1,1 - DCA	1,1 - DCE	1,2-DCA	trans 1,2-DCE	cis 1,2-DCE	Benzene	Chloroethane	Ethylbenzene	Toluene	1,1,1-TCA	TCE	Vinyl chloride	Naphthalene	Xylenes, Total
Units	PVC/HP	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
RWQCB ESLs ¹				NE	NE	420	3,400	18,000	690	19,000	17,000	1,800	2,700	170,000	530,000	360,000	11,000	13.0	11,000	160,000
RWQCB ESLs ²				NE	NE	120	1,000	6,300	200	6,700	6,200	540	820	170,000	350,000	130,000	530	3.8	3,200	160,000
Former Three 10,0	00-Gallon US	STs	Į							I										
SB-51-GW44	PVC	44	7/12/2008	170	<50	0.52	<0.38	<0.43	3.6	<0.41	6.2	0.44J	<0.50	0.97	2.3	<0.48	3.8	0.61	2.5	7
SB-45-GW20	HP	20	7/10/2008	640	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
SB-45-GW45	PVC	45	7/10/2008	900	50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.57	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
SB-46-GW48	HP	48	7/10/2008	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Former 8,000-Gallo	on Mineral Sp	oirits/ 1,1,	1-TCA UST			•			•	•					•					
SB-50-GW58	HP	58	7/12/2008	<50	<50	<0.50	<0.38	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	6.3	<0.38	1.5	<0.45
Parking Lot Area												2.								
SB-49-GW42	HP	42	7/12/2008	<50	<50	<0.50	0.39J	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.45
SB-949-GW42(D)	HP	42	7/12/2008	<50	<56	<0.50	0.38J	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.43 J	<0.38	<0.50	<0.45
Water Supply Well	Area																			1
SB-52-GW51	HP	51	7/12/2008	<50	<50	<0.50	<0.50	<0.50	2.2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.45
SB-47-GW24	PVC	24	7/11/2008	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.62	<0.50	<0.50	<0.45
SB-38-GW25	PVC	25	7/8/2008	130	<50	0.50	49	70	<0.50	<0.50	4.1	<0.50	<0.50	<0.50	<0.50	<0.50	0.55	1.0	<0.50	<0.50

NE -value not established

(D) - duplicate sample

ÚSŤ - Underground Storage Tank

TPHg - Total Petroleum Hydrocarbons as Gasoline

TPHd - Total Petroleum Hydrocarbons as Diesel

1,2 - DCA - 1,2-dichloroethane

trans-1,2-DCE - Trans-1,2-dichloroethene

- Cis-1,2-dichloroethene cis-1,2-DCE

1,1,1-TCA - 1,1,1-Trichloroethane

TCE - Trichloroethene

- all concentrations expressed in micrograms per liter (µg/l)

<0.50 - Not reported at or above laboratory's reporting limit of 0.50 µg/L

-TPHg, TPHd, and VOCs analyzed using EPA Methods 8015B(M) and 8260B by Advanced Technology Laboratories (ATL), Signal Hill, California -Concentrations in bold exceed ESLs for vapor intrusion concerns - Residential Land Use

PVC - Polyvinyl chloride pipe

HP - Hydropunch RWQCB ESLs¹ ' - Environmental Screening Levels taken from the California Regional Water Quality Control Board, San Francisco Bay Region document entitled "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," Interim Final November 2007, update May 2008, commerical land use.

RWQCB ESLs² '- Environmental Screening Levels taken from the California Regional Water Quality Control Board, San Francisco Bay Region document entitled "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," Interim Final November 2007, updated May 2008, residential land use.

Table 2 Summary of Semi-Annual Groundwater Monitoring Results - December 2009 AB&I Foundry 7825 San Leandro Street Oakland, California

Sample ID	Date	бнат	ТРНА	1,1 - DCA	1,1 - DCE	1,2-DCA	trans 1,2-DCE	cis 1,2-DCE	n-Butylbenzene	n-Propylbenzene	sec-Butylbenzene	Benzene	Chloroethane	Ethylbenzene	1,2,3- Trichloropropane	Tert-Butylbenzene	Isopropylbenzene	4-lsopropyltoluene	Toluene	1,1,1-TCA	Vinyl chloride	m,p-Xylene	Naphthalene
Units		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
RWQCB ESLs ¹		NE	NE	3,400	18,000	690	19,000	17,000	NE	NE	NE	1,800	2,700	170,000	NE	NE	NE	NE	530,000	360,000	13.0	NE	11,000
RWQCB ESLs ²		NE	NE	1,000	6,300	200	6,700	6,200	NE	NE	NE	540	820	170,000	NE	NE	NE	NE	350,000	130,000	3.8	NE	3,200
MISC																							
MW-1	12/10/2009	<50	<50	0.41	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50
MW-2R	12/10/2009	99	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50
MW-3	12/9/2009	51	<50	16	6.4	<0.50	0.37	0.25	<0.50	<0.50	<0.50	0.51	78	<0.50	<0.50	<0.50	<0.50	<0.50	2.6	<0.50	17	<1.0	<0.50
MW-4	12/9/2009	70	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50
MW-5	12/10/2009	53	<50	0.58	0.63	<0.50	0.67	2.2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50
MW-6	12/9/2009	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50
MW-7	12/10/2009	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50
MW-8	12/9/2009	180	<50	94	58	1.8	<2.5	<2.5	<2.5	<2.5	<2.5	3.0	2,400	<2.5	<2.5	<2.5	4.1	<2.5	<2.5	14	85	<5.0	<2.5
MW-8 (D)	12/9/2009	190	<50	92	60	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	2.8	2,400	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	14	82	<10	<5.0
MW-9	12/9/2009	2,700	150	<0.50	<0.50	<0.50	<0.50	<0.50	0.74	5.0	1.1	36	<0.50	2.7	<0.50	0.36	5.5	1.6	0.87	<0.50	<0.50	1.1	1.3

Notes:

NE - value not established

feet bgs - feet below ground surface

(D) - Duplicate sample

*500 - Reported due to the presence of discrete peaks

1,1,2-TCA TPHg - 1,1,2 -Trichloroethane

- Total Petroleum Hydrocarbons as Gasoline - Total Petroleum Hydrocarbons as Diesel

- TPHd - 1,1 - Dichloroethene
- 1,1 DCE - 1,1 - Dichloroethane

1,1 - DCA

- 1,1,1-Trichloroethane 1,1,1**-**TCA

1,2 - DCA - 1,2-Dichloroethane

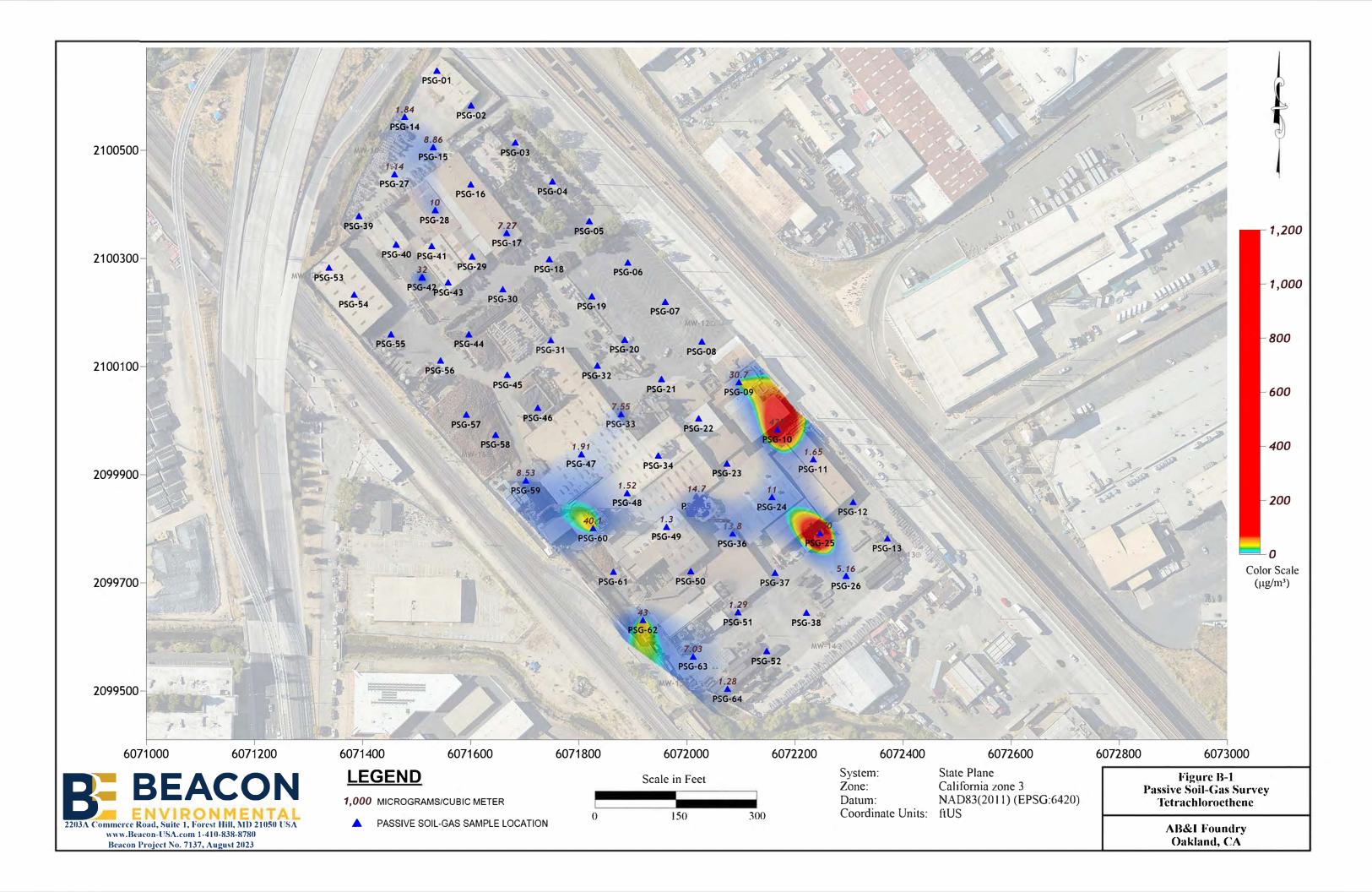
trans-1,2-DCE - Trans-1,2-dichloroethene cis-1,2-DCE - Cis-1,2-dichloroethene

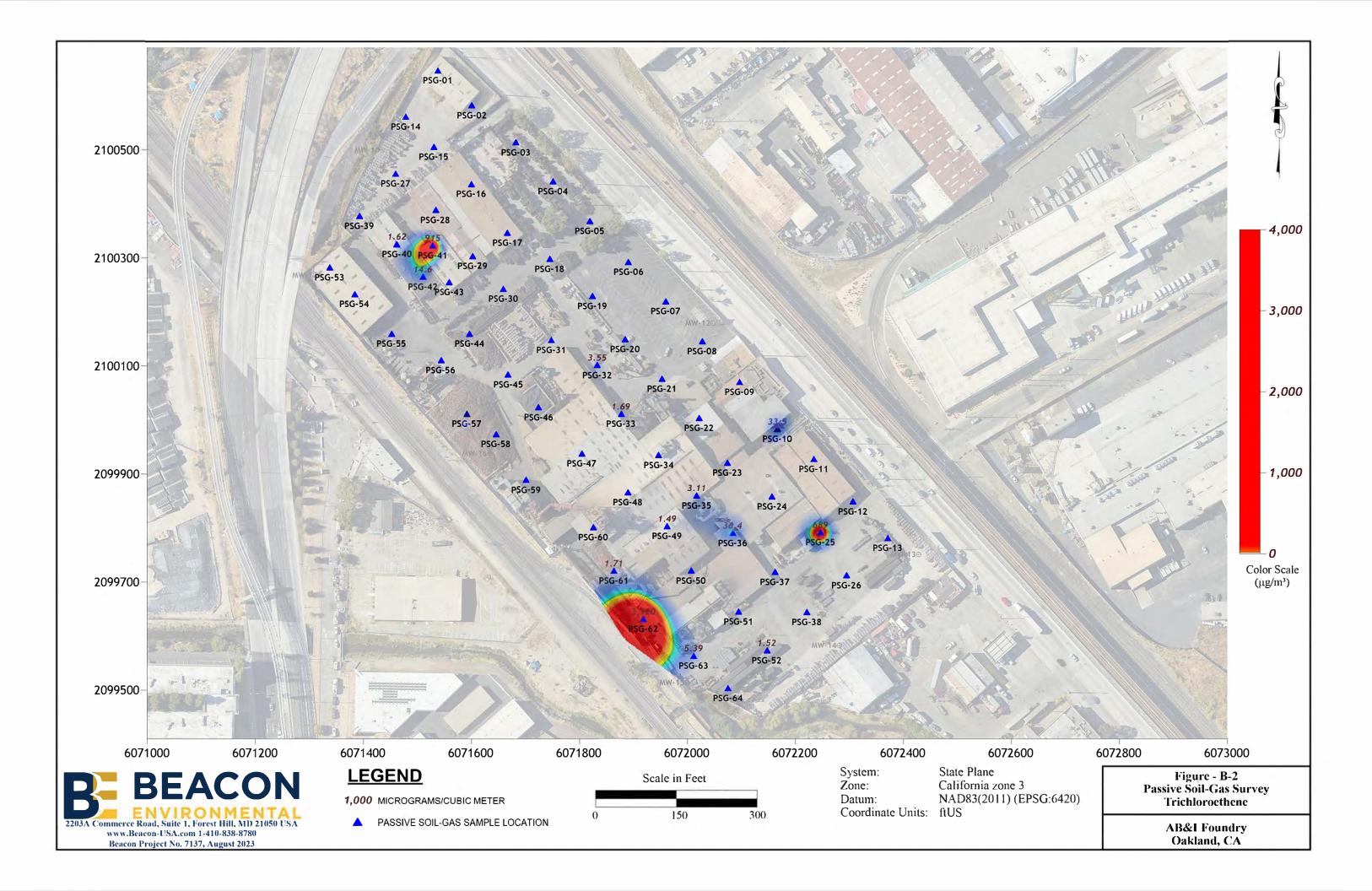
- all concentrations expressed in micrograms per liter (µg/l)

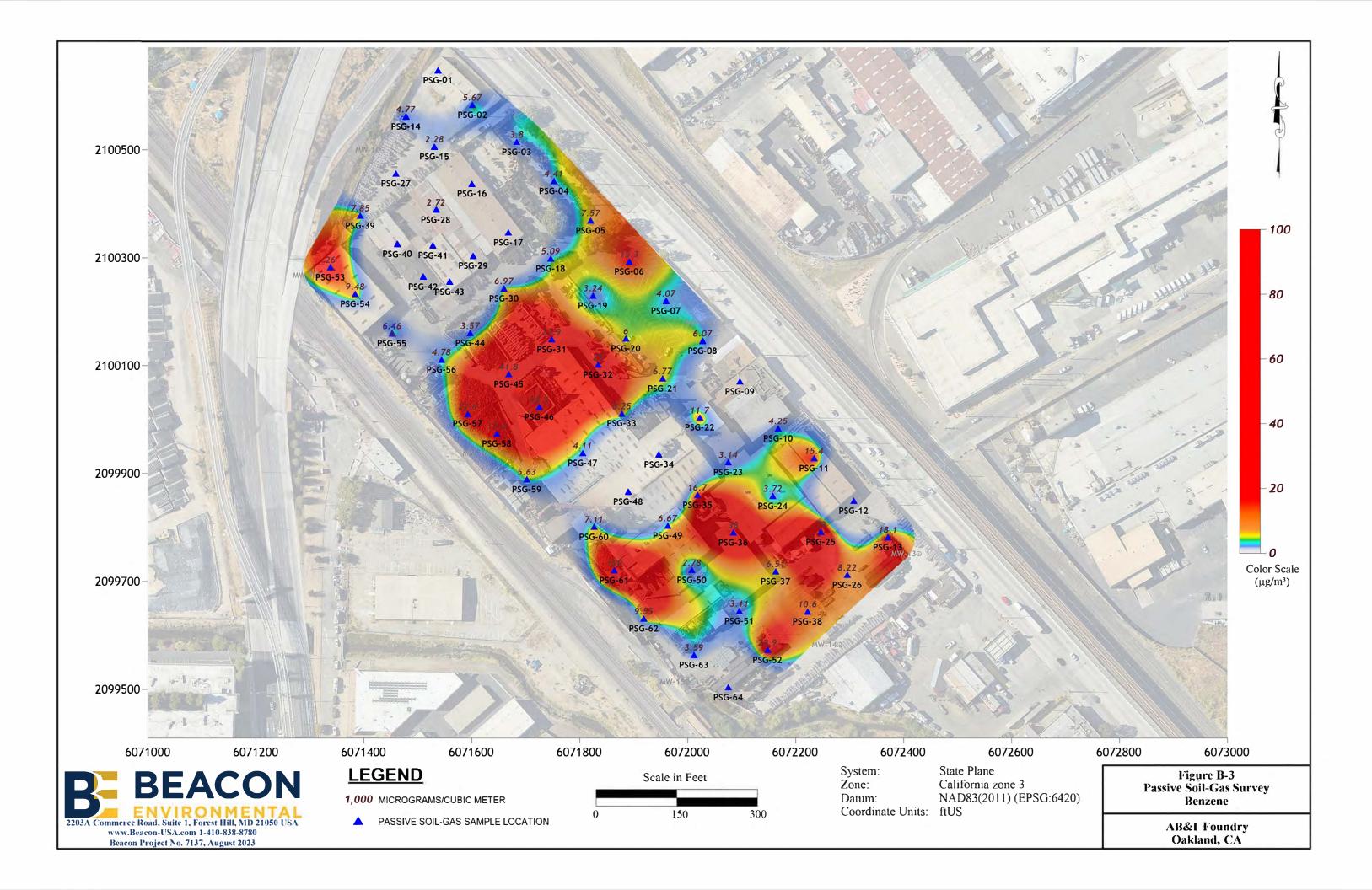
<0.50 - Not reported at or above laboratory's reporting limit of 0.50 µg/L

-TPHg, TPHd, and VOCs analyzed using EPA Methods 8015B(M) and 8260B by Advanced Technology Laboratories (ATL), Signal Hill, California

RWQCB ESLs¹ - Environmental Screening Levels taken from the California Regional Water Quality Control Board, San Francisco Bay Region document entitled "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," Interim Final November 2007, updated May 2008, Table E-1, commercial land use scenario.

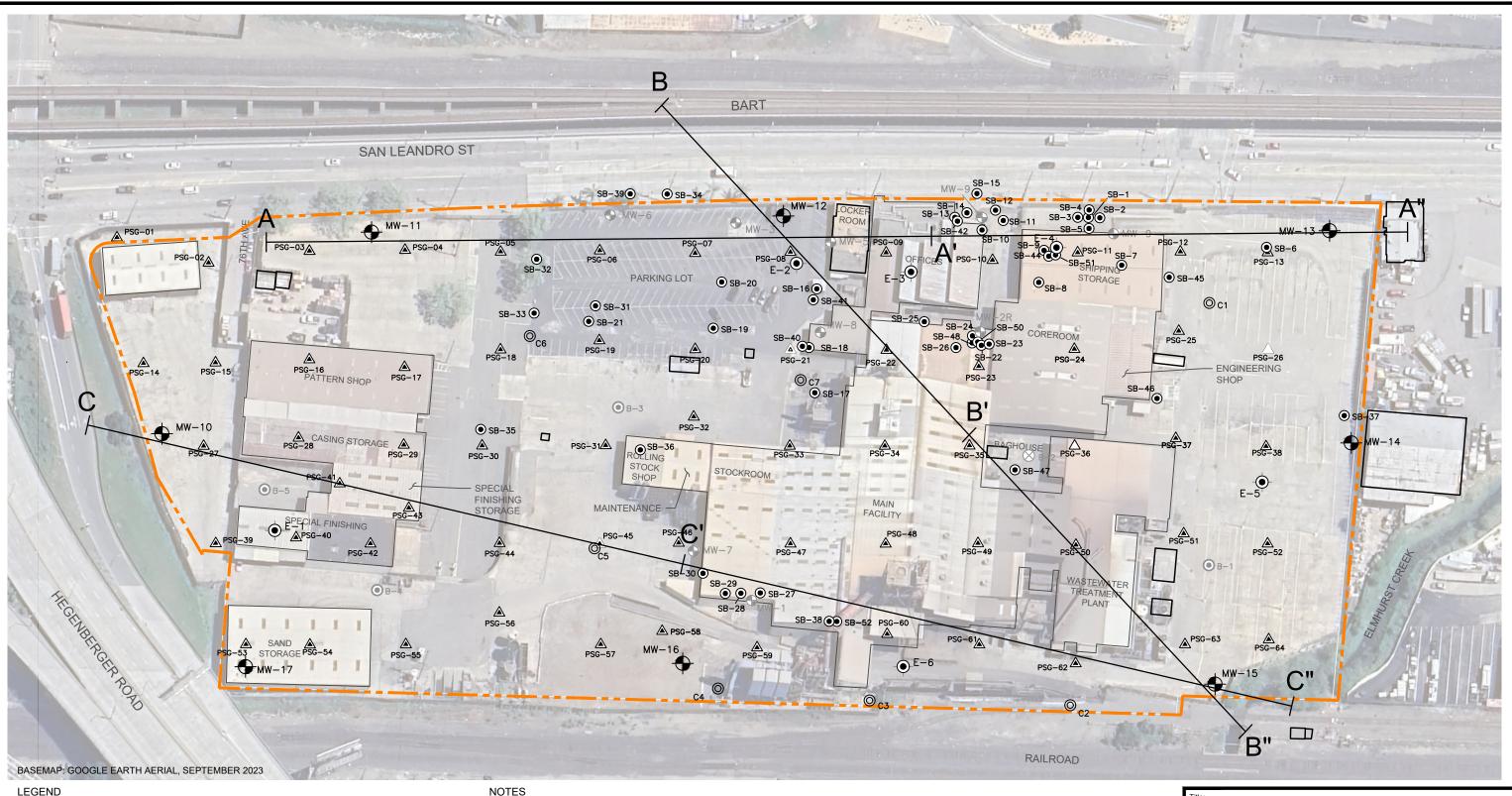

RWQCB ESLs² - Environmental Screening Levels taken from the California Regional Water Quality Control Board, San Francisco Bay Region document entitled "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," Interim Final November 2007, updated May 2008, Table E-1, residential land use scenario.


S:\PROJECTS-ACTIVE\AB&I Foundry\Reports\Groundwater Monitoring\Q409\Tables\Table 2 - Summary of Analytical Results.xls


Revised Site Conceptual Model & Data Gap Investigation Work Plan 7825 San Leandro Street, Oakland, California

APPENDIX B

Soil Gas Isoconcentration Maps (Heat Maps)



Revised Site Conceptual Model & Data Gap Investigation Work Plan 7825 San Leandro Street, Oakland, California

APPENDIX C

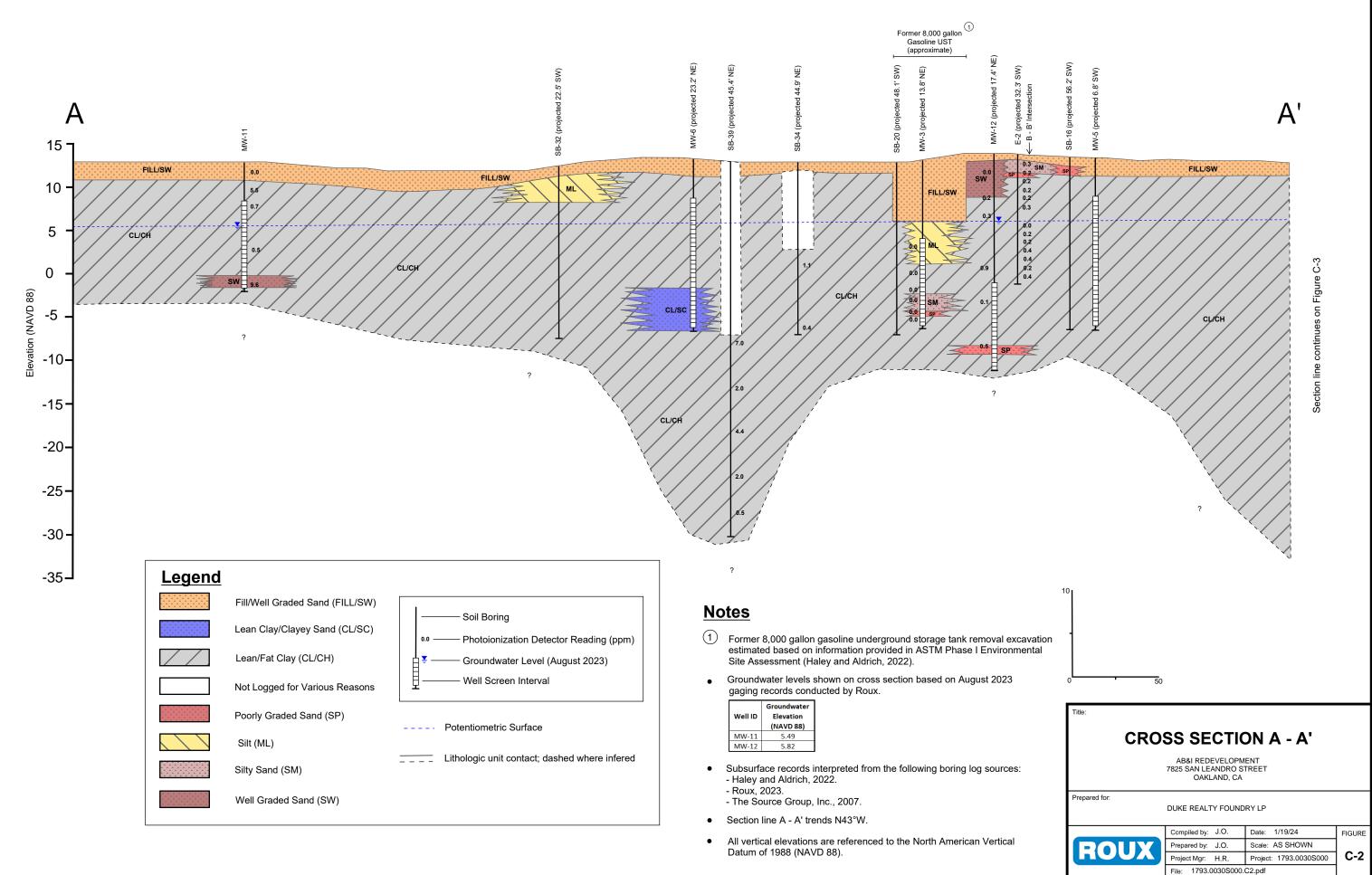
Cross Sections

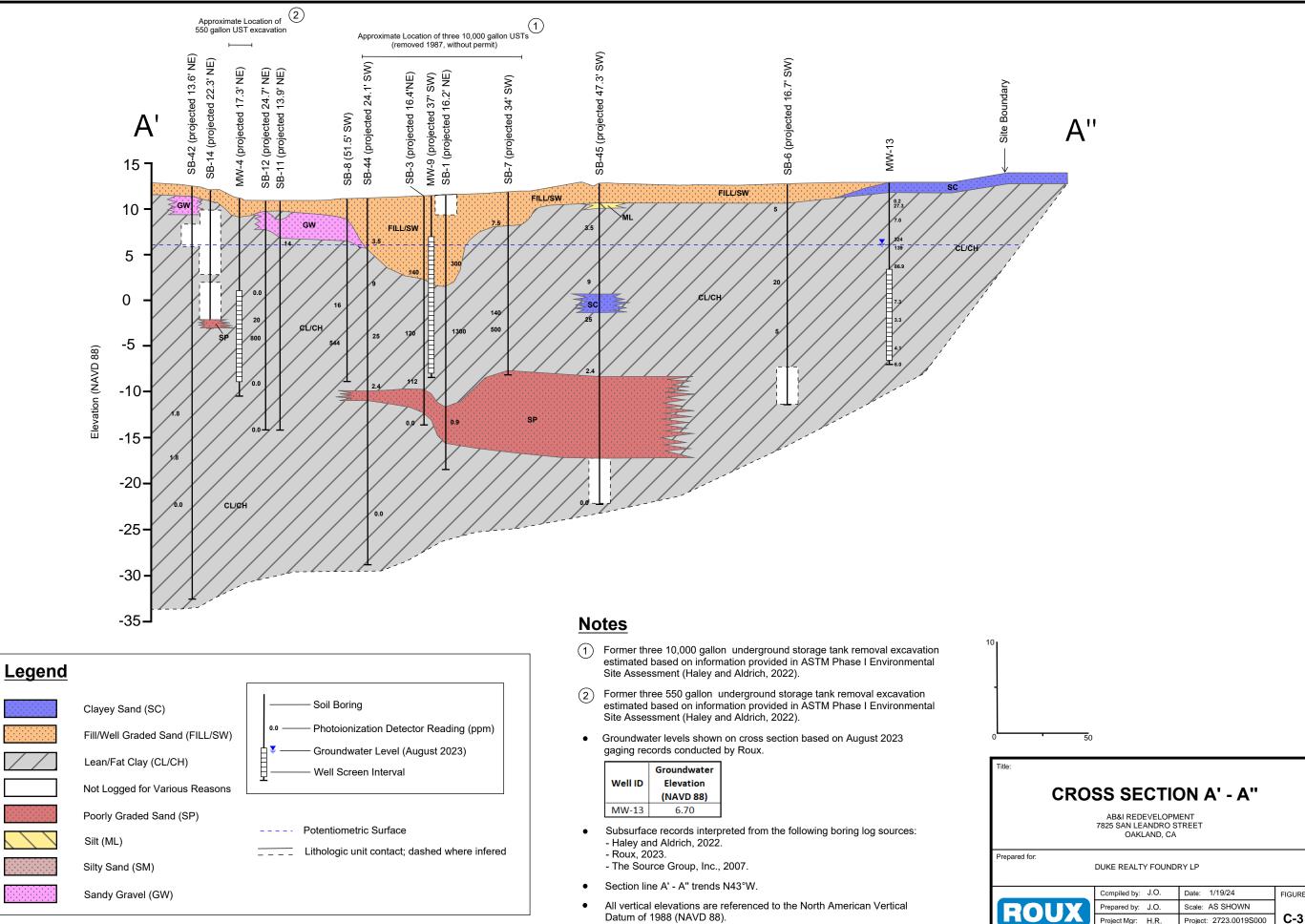
- SITE BOUNDARY
- \oplus ENVIRONMENTAL SOIL BORING/HALEY & ALDRICH SAMPLE LOCATIONS (2002)
- \otimes GEOTECH SOIL BORING
- EXISTING GROUNDWATER MONITORING WELLS (ROUX, 2023) •
- DECOMMISSIONED GROUNDWATER MONITORING WELL
- $oldsymbol{eta}$ SOIL BORING
- ▲ PASSIVE SOIL GAS SAMPLING LOCATIONS (ROUX, 2023)
- \bigcirc CPT BORINGS (HALEY & ALDRICH, 2022)

- NOTES
- 1. ALL BUILDINGS ONSITE HAVE BEEN DEMOLISHED AS OF NOVEMBER 2023.

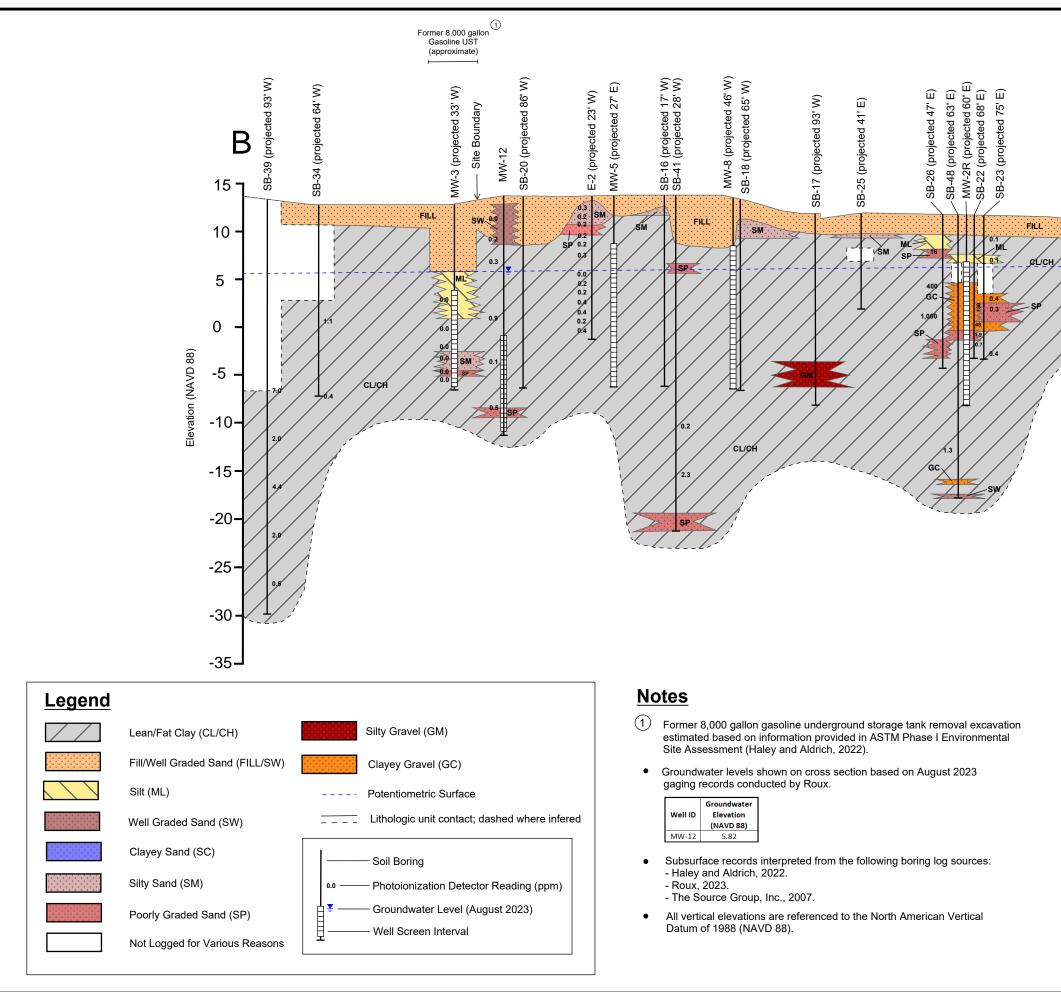
SITE PLAN WITH **HISTORICAL SAMPLING LOCATIONS**

7825 SAN LEANDRO STREET OAKLAND, CALIFORNIA

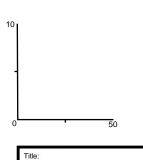

Prepared for

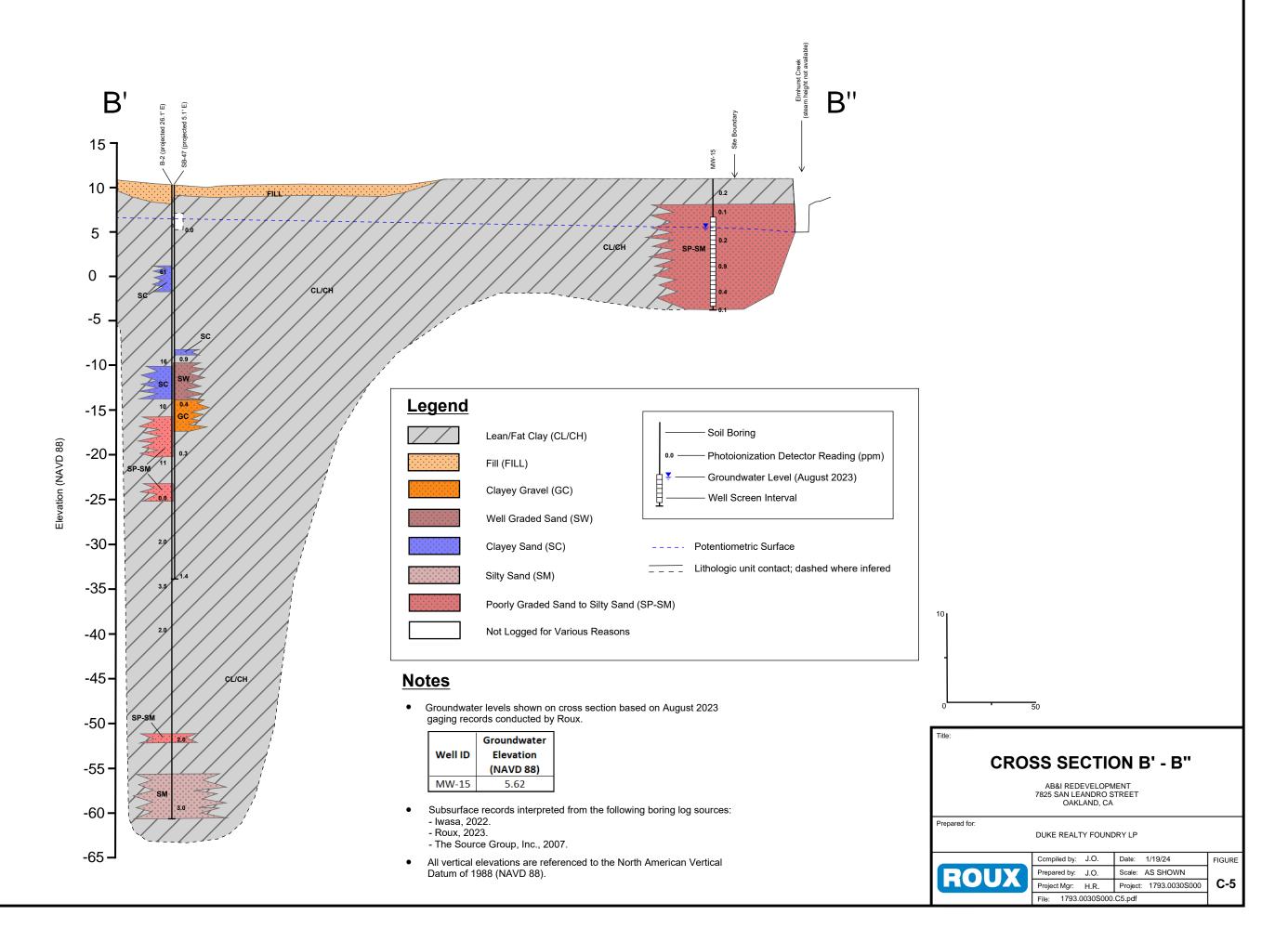

ROL

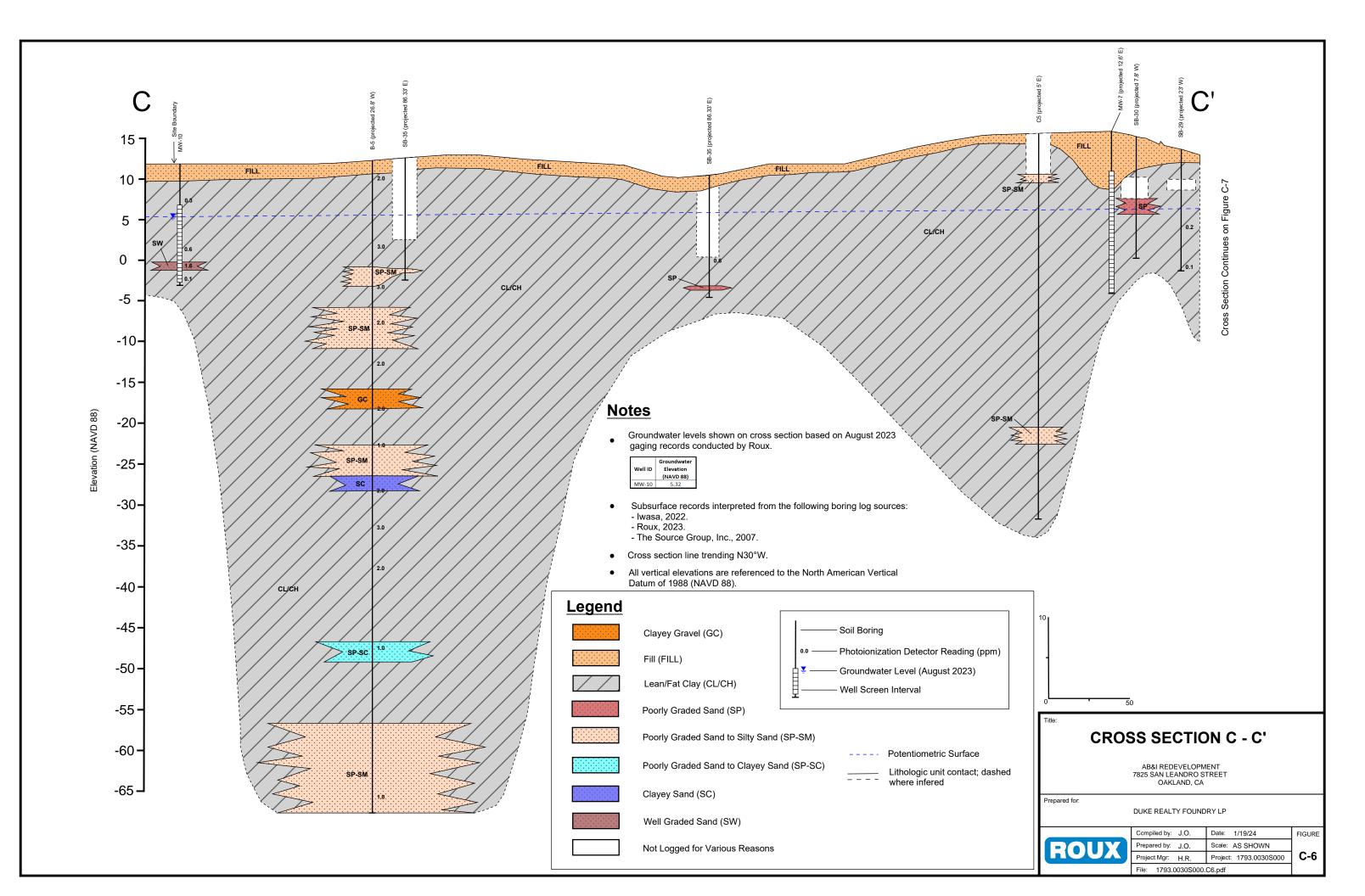
100'

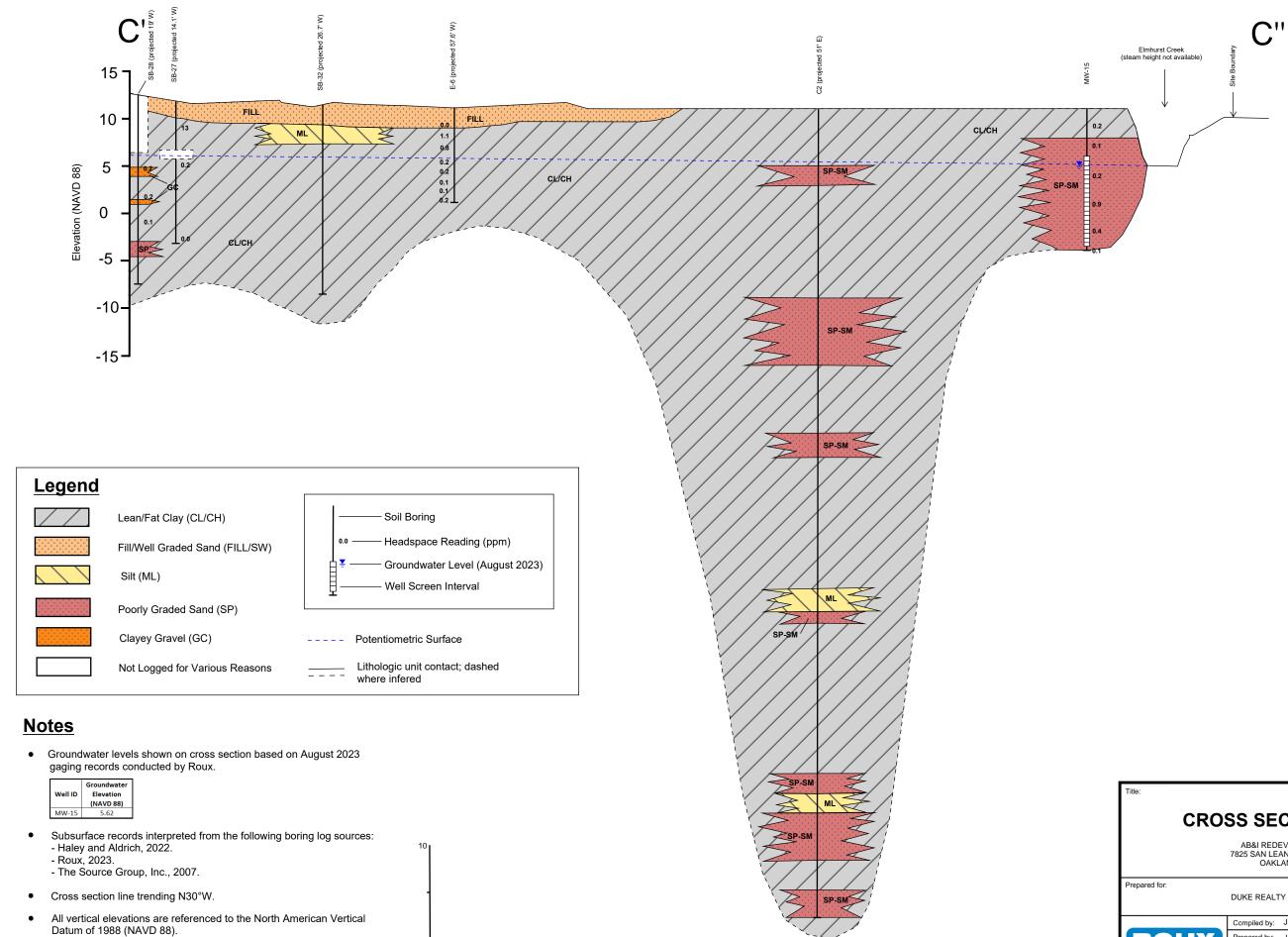

DUKE REALTY FOUNDRY LP

Compiled by: JO	Date: 25APR2024	FIGURE
Prepared by: CB	Scale: AS SHOWN	
Project Mgr: JO	Project: 1793.0030S000	C-1
File: 7825 SAN LEANDRO ST.DWO	3	


Compiled by: J.O.	Date: 1/19/24	FIGURE
Prepared by: J.O.	Scale: AS SHOWN	
Project Mgr: H.R.	Project: 2723.0019S000	C-3
File: 2723.0019S00.C	3.pdf	


B'


Section line continues on Figure C-5

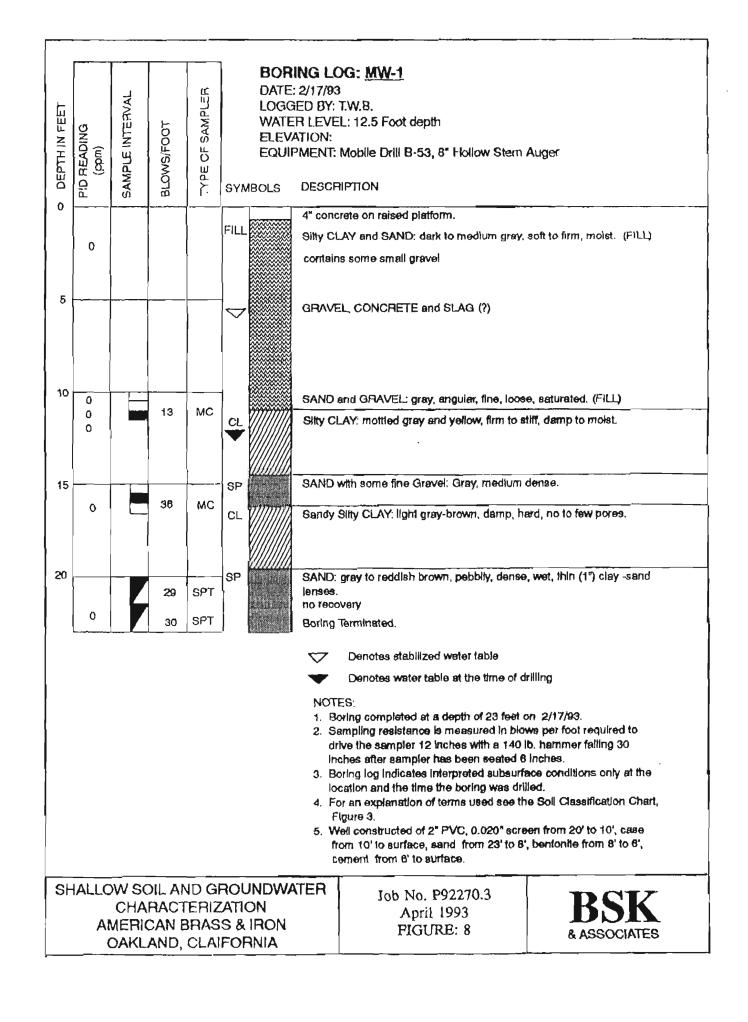


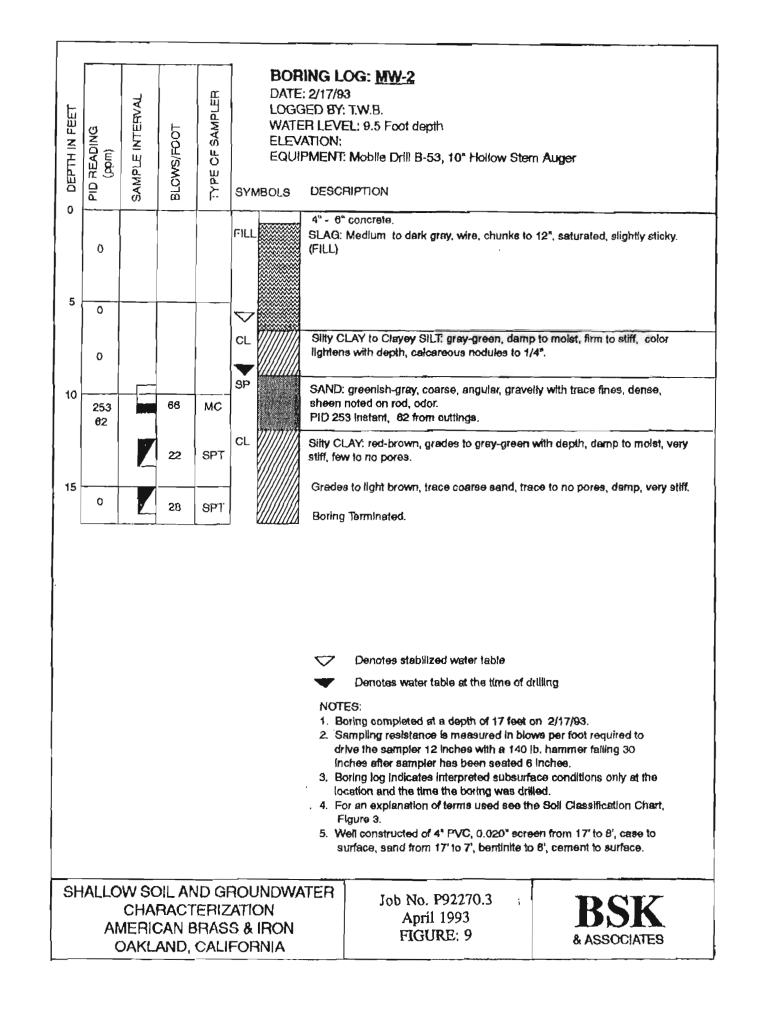
CROSS SECTION B - B' AB&I REDEVELOPMENT 7825 SAN LEANDRO STREET OAKLAND, CA Prepared for: DUKE REALTY FOUNDRY LP Compiled by: J.O. Date: 1/19/24 FIGU

ROUX	Compiled by: J.O.	Date: 1/19/24	FIGURE	
	Prepared by: J.O.	Scale: AS SHOWN		
	Project Mgr: H.R.	Project: 1793.0030S000	C-4	
	File: 1793.0030S000.C4.pdf			

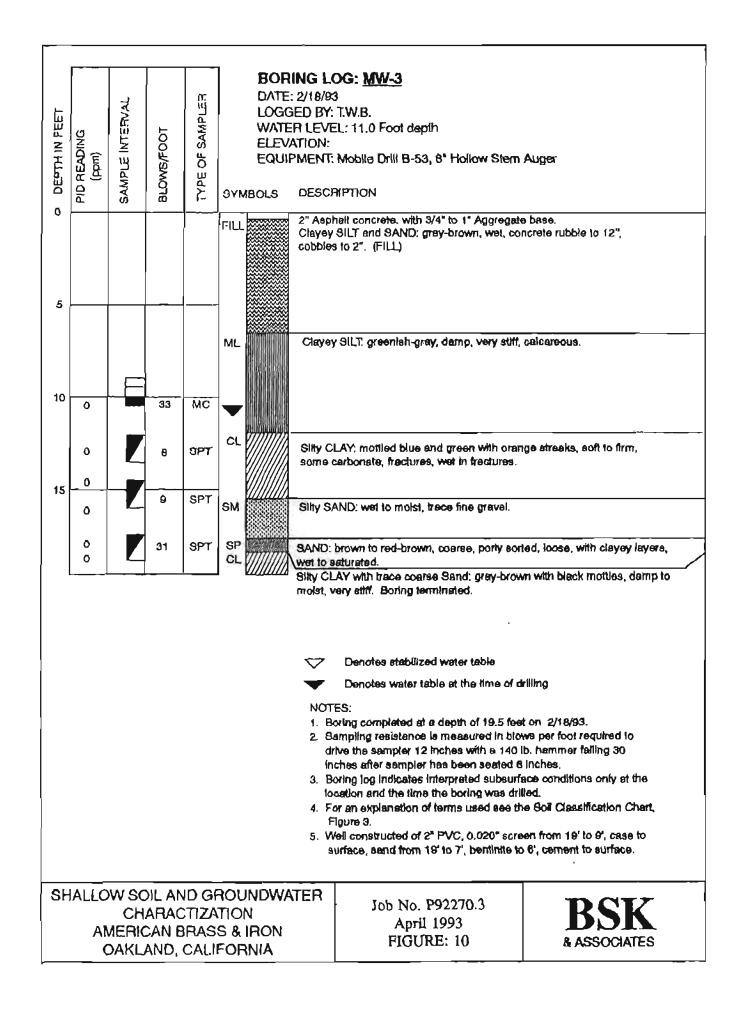
CROSS SECTION C' - C"

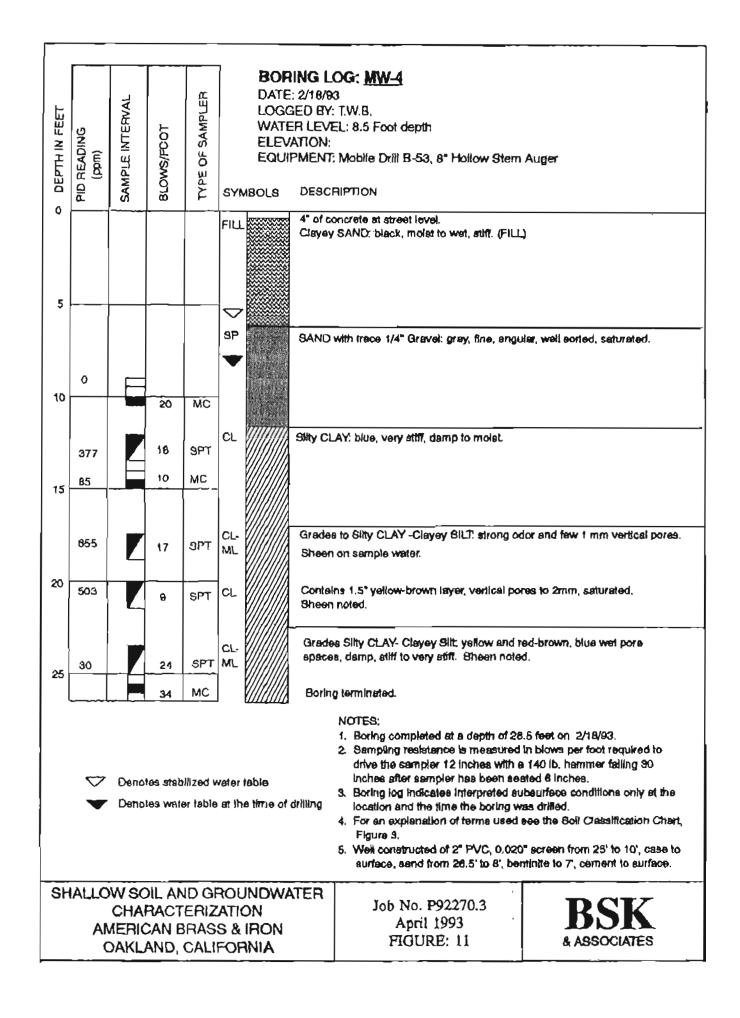
AB&I REDEVELOPMENT 7825 SAN LEANDRO STREET OAKLAND, CA


DUKE REALTY FOUNDRY LP


ROUX	Compiled by: J.O.	Date: 3/20/24	FIGURE
	Prepared by: J.O.	Scale: AS SHOWN	
	Project Mgr: J.O.	Project: 1793.0030S000	C-7
	File: 1793.0030S000.	C7.pdf	

Revised Site Conceptual Model & Data Gap Investigation Work Plan 7825 San Leandro Street, Oakland, California


APPENDIX D


Boring Logs

		FI	ELD DA	TA			BORING LOG: MW-2R	
	SAMPLER TYPE SAMPLE NO.	SAMPLE INTERVAL	TIME OF COLLECTION	BLOWSFOUT	(ಬಕಡ) ರಾಗ		DATE(S): 8/13/06 LOGGED BY: E. Studley WATER LEVEL: 9 feet at time of drilling EQUIPMENT: BK-81, 8" HSA	NOLLON METT
}	SA	SAN	NO I	BLO	Q	USCS	DESCRIPTION	88
-	Dritisci with mast down no sampling					СГЛСН	4" Concrete Silty Sandy Clay: Otive brown/gray, moist, 2" PVC 0-5" medium grained sand, very soft Cement 0-3" Bentonite 3-4"	
, ~-						SC	Clayey Sand: Dark gray, loose 2/12 Sand 20-4' medium grained sand	
· • • •	-					CL	Sandy Clay: Dark olive gray, wet, Slotted PVC 20-5 very soft	
-						ССЛСН	Clayey Sand: Olive brown, wet, loose, medium grained sand	
-						CL	Sandy Clay: Olive brown, wet, fine grained sand Total Depth Weil 20	
						-		
						-		
	SK	Fr	mineer	c Gaol	omete		PROJECT NAME: <u>A B & I. Oakland, California</u>	

		F	ELD D/	ATA			BORING LOG: <u>MW-5</u>	
DEPTH (Feet bgs)	SAMPLER TYPE/ SAMPLE NO.	SAMPLE INTERVAL	TIME OF COLLECTION	BLOWSFOOT	PID (ppm)		DATE(S): 8/12/06 LOGGED BY: E. Studley WATER LEVEL: 13 feet at time of drilling EQUIPMENT: CME-75, 8" HSA	WELL
430	SAN	SAM		BLQ) Clid	USCS	DESCRIPTION	WELL
1						Fill	3" Asphalt Concrete Silly Sandy Gravel: Yellow brown, damp, (Fill) 2" PVC 0-5"	
	CS-1		11:05	32		СГЛСН		919 9 17
5-	CS-2		11:08	11		СН	Silty Clay: Dark gray, moist, soft, 2/12 Sand 20-4' trace organics	
	CS-3		11:12	12			Slotted PVC 20-5'	
10	CS-4		11:15	11			Silty Clay: Brown mottled oilve gray, moist, soft	
15 -	CS-5)		11:18	4		СГЛСН	Silty Sandy Clay: Olive brown, wet, soft medium grained sand	
-							grades mottled olive brown/gray Total Depth Well 20	
20 20	CS-6		11:24	21		SC	Clayey Silly Sand: Gray brown, medium grained sand	
25		_						
00								
35								
				01			PROJECT NAME: A B & I, Oakland, California	
В,	SK 3	⊏n En	gineer. vironn	s,Geolo nental !	ogists, Scienti	sts PR0	DJECT NUMBER; E0605504S	_

		F	ELD D	ATA	_		BORING LOG: MW-6	
DEPTH (Føet bgs)	SAMPLER TYPE/ SAMPLE NO.	SAMPLE INTERVAL	TIME OF COLLECTION	BLOWS/FOOT	PID (ppm)		DATE(S): <u>8/12/06</u> LOGGED BY: <u>M. Cline</u> WATER LEVEL: <u>13 feet at time of drilling</u> EQUIPMENT: <u>CME-75, 8" HSA</u>	WELL
Ö	25	8A SA	<u>€8</u>	<u> </u>	J.	USCS Fill	DESCRIPTION	\$8
-	CS-1		9:10	10			Silty Sandy Gravel: Brown, damp, (Fill) 2" PVC 0-5"	
5 -	CS-2		9:15	12		СН	Silty Clay: Dark gray, moist, soft, 2/12 Sand 20-4" trace organics	
10 -	CS-3		9:18	14			Stotted PVC 20-5 grades dark gray to olive gray, very moist	
-	CS4		9:21	15			Silty Clay: Brown mottled oilve gray, very moist to wet in pores, some carbonates	
15 — - - -	C543		9:25	10		CL/SC	Silty Clay/Clayey Sand: Brown to light olive brown, wet Total Depth Well 20'	
20	CS-6		9:38	6		CL/CH	Silty Clay: Brown to light olive brown, wet	<u>×.91.1.</u> 02
25								
30								
35								
B	SK	En En	gineer: vironn	s,Geolo nental f	ogists, Scienti	PRO	PROJECT NAME: A B & I, Oakland, California	

,

		FI	ELD DA	TA			BORING LOG: MW-7	
DEPTH (Feet bgs)	SAMPLER TYPE/ SAMPLE NO.	SAMPLE INTERVAL	TIME OF COLLECTION	BLOWS/FOOT	PlD (ppm)		DATE(S): <u>8/12/06</u> LOGGED BY: <u>E. Studley</u> WATER LEVEL: <u>13 feet at time of drilling</u> EQUIPMENT: <u>CME-75, 8" HSA</u>	WELL
ы́ Д	SAL	SAN	N I I I I I I I I I I I I I I I I I I I	BLC	PID	uscs	DESCRIPTION	<u> </u>
-	CS-1		15:26	29		Fill CL/CH Fill	4" Concrete Silty Sandy Gravel: Yellow brown, damp, (Fill) 2" PVC 0-5 Silty Clay: Dark gray, damp, gravels to 1.5" glass, stag, concrete (Fill) Bentonite 3-4	
5 -	NR		15:30	18			2/12 Sand 20-4	The second se
-	C\$-2		15:34	11		СН	Silty Clay: Dark gray, wet, strong hydrocarbon odor	
10	CS-3		15:45	4			grades to dark gay mottled light gray wet, slight odor, roots/wood fragments	
15	<u>CS-4</u>		15:50	7		CL/CH	Sandy Silty Clay: Olive brown/gray, wet, soft, medium grained sand, faint odor	
20	CS-5		16:01	9		 	grades to olive gray Total Depth Well 20	
25								
30								
] 35 —								
	SK	En	ngineer	s,Geol	ogists,	PR	PROJECT NAME: <u>A B & I, Oakland, California</u> OJECT NUMBER: <u>E0605504S</u>	

		FI	eld d/	ATA			BORING LOG:	
DEPTH (Feet bgs)	SAMPLER TYPE/ SAMPLE NO,	SAMPLE INTERVAL	TIME OF COLLECTION	BLOWS/FOOT	. (mqq) Old		DATE(S): <u>8/12/06</u> LOGGED BY: <u>E. Studley</u> WATER LEVEL: <u>13 feet at time of drilling</u> EQUIPMENT: <u>CME-75, 8" HSA</u>	WELL CONSTRUCTION
ā	សូល្អ	3	FS	ផ	□	uscs Fill	3" Asphalt Concrete	<u>\$</u> 8
-	CS-1		13:00	20		CL/CH Fill	Silty Sandy Gravel: Yellow brown, moist, (Fill) 2" PVC 0-5"	
5~	CS-2		13:02	8		CL/CH	medium grained sand lenses	
-	CS-3		13:08	12			Slotted PVC 20-5	
10	NR		-	13		СН	grades to olive brown mottled gray	
15 -	CS-4		13:29	5		CL/CH	Silty Sandy Clay: Olive brown, wet, soft, medium grained sand	
							trace carbonates	
-	CS-6		13:36	15				
25 -								
30 -								
35		[
B	SK	En En	gineer vironn	s,Geole nental	ogists, Scienti	sts PR(PROJECT NAME: A B & I, Oakland, California DJECT NUMBER: E0605504S	_

		FI	ELD DA	ATA			BORING LOG: MW-9	
DEPTH (Feet bgs)	SAMPLER TYPE/ SAMPLE NO.	SAMPLE INTERVAL	TIME OF COLLECTION	BLOWS/FOOT	PID (ppm)		DATE(S): <u>8/18/06</u> LOGGED BY: <u>J. Yeazell</u> WATER LEVEL: <u>8 feet at time of drilling</u> EQUIPMENT: <u>Marl Limited Access</u> , <u>8" HSA</u>	WELL
B	2 2	SA	Ę8	BL	DIA	USCS	DESCRIPTION	<u>¥8</u>
-	DP-1		10:57			Fill CH	6" Concrete Silty Clay: Dark gray, some concrete debris 2" PVC 0-5 Cement 0-3" Silty Clay: Dark gray, hydrocarbon odor Bentonite 3-4"	4 1 1
5 -	DP-2		11:03				2/12 Sand 20-4"	
	DP-3		11:10			СН	Silty Clay: Olive brown/brown, no odor Slotted PVC 20-5'	
-	DP-4		11:29				grades wet, slight odor	
15 -	DP-5		11:36				some fine sand, odor	
20	DP-6		11:40				Total Depth Well 20*	
25 -								
30 -								
35 _								
B	SK	En En	gineer	s,Geol pental	ogists, Scienti	PR	PROJECT NAME: A B & I, Oakland, California OJECT NUMBER: E0605504S	

		T I	HE						BORINGAVELI	. ID:	
envir		stel	Sou	RC	E G	ìR(DUP, INC.			SB-1	
PROJE			ADDR	ESS;		A8&	1 Foundry		Project No.	01-ABI-001	
BORIN	G LOC	ATION (AT SIT	Ξ :		3 10),000 Gallon USTs		Logged By:	Nathan Colio	<u></u>
CONTR	LACTO	RAND		IENT:		Viror	nex Geoprobe		_		
SAMPL	ING M	ETHOD			_	Conl	Inuous	MONITORING DEVICE:	MiniRae 2000		
START	DATE	(TIME)	:			10/3	0/2007 9:10	FINISH DATE! TIME	10/30/2007 11:	10	
FIRST	WATER	R (BGS):	:			21.5		STABILIZED WATER LEVEL:			
SURFA	CE EL	EVATIO	N:					CASING TOP ELEVATION:			
TOTAL	BORIN	IG DEP	τH(S):	, 1		30'		BORING DIAMETER/DEPTH:	3 1/4" / 30'		
Date/Time	Sample Interval	PID (ppm)	Recovery	Shaligraphy	Depth (feet)	Water-level		LITHOLOGIC DESCRIPTION, color, moisture, density, grain : ES ARE APPROXIMATE UNLES	size/plasticity, o		Well construction details
					0		No recovery.				-
	\ge				2						1
					3						
	\ge				4						
					5						
					8		Silly gravelly clay, medium	o prown, moist (111).			
		300			7						
					8 	L	-				
	\ge				10						_
					11	-	Clay (CL), black (5Y, 2,5/1), moist, stiff, medium plasticity,	no odor.		
					12		-				
					13		-				
		1300			14	-	-				
					15	-	-				
					16						
			 		17		•				
			L		18	 	Same as above, but more	moist, sofler, peltoleum odor.			
					19						
				rue	20						

-

C	G		THE						BORING/WELL	. 10	
anvir	0/mer	ntal	Sou	R	BE C	GRI	OUP, INC.			SB-1	
ROJE		MEA		RESS		A8&	l Foundry		Project No.	01-AB(-001	
BORIN	G LOC	ATIO		ΓE):),000 Gallon USTs		Logged By:	Nathan Colton	
ONTR	ACTO	R AN		MEN	T :	Viror	nex Geoprabe			_	
AMPL	ING M	ETHO	D:			Con	linuous	MONITORING DEVICE:	MiniRae 2000	_	
TART	DATE	(TIM	E):			10/3	0/2007 9-10	FINISH DATE/ TIME	10/30/2007 11:1	10	
RST	WATER	₹ (8G	S):			21 5		STABILIZED WATER LEVEL:			
URFA	CE EL	EVAT	ION:					CASING TOP ELEVATION:			
OTAL	BORIN	NG DE	EPTH(S):			30.		BORING DIAMETER/DEPTH:	3 1/4" / 30'		
Dale/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feet)	Water-level		LITHOLOGIC DESCRIPTI n, color, moisture, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, o		Well construction
					20 21 22		-				
		0.9			23		Sandy gravel (SP), coarse	grained, wei, poorly sorted, loos	e, no odor, grave	al piecas.	
					25		-				
					26						
					27		Silty clay (CL), light yellowi	sh brown (10YR, 6/4), wel, medi	um plasticity, no	odor	
	\ge				28		-				
					29 30			Bottom of Boring 30'			
								Pormu or Boting 30			
					31]				
					32]				
					33		-				
					34		-				
					35 36		-				
					37		-				
	<u> </u>				38	<u> </u>	-				
					39	+	-				
						 	-				

C			HE						BORINGAVELL	. ID:	
BOVIC				JR	CE	GA	oup, Inc.			SB-2	
PROJE	CT NA			RES	S :	AB&	Foundry		Project No.	D1-ABI-001	
BORING	S LOC	ATION	(AT SI	TE):		3 10	,000 Gallon USTs	۲.	Logged By:	Nathan Coltor	`
CONTR	ACTO	R AND	EQUIP	PMEN	IT:	VIIOI	nex Geoprobe				
SAMPL	ING MI	ETHOD):			Cont	เกิปขับร	MONITORING DEVICE:	MiniRae 2000		
START	DATE/	(TIME	}:			10/3	0/2007 11:15	FINISH DATE TIME	10/30/2007 124	45	
FIRST	NATER	(BGS):			16'		STABILIZED WATER LEVEL:			
SURFA								CASING TOP ELEVATION:			
TOTAL				:		25'		BORING DIAMETER/DEPTH:	3 1/4" / 25"		
Date/Time	Sample Interval	PID (ppm)	very	Shatigraphy	Depth (feet)	Water-fevel		LITHOLOGIC DESCRIPTION, color, moisture, density, grain ES ARE APPROXIMATE UNLES	size/plasticity, ol		Well construction details
Date	Sart	DIA	Recovery	Shati		Wate					Well detai
					0	+	Cemeni debris.				
	X				Ž	├					1
					3		Slity Gravelly Clay(fill), oliv	e brown, moisi, siifl, medium pla	isticity, strong pe	troleum odor.	
	\times				4						
					5	ļ					
					8						
		300			7	ļ .					
					9						
	\bowtie				10						
					11						
					12		Clay (CL) black motor you	ry stiff, medium plasticity, petrole			
					13			יץ סטוו, ווובטועוד פוסטומוץ, פצרטונ			
	\mathbf{X}				14						
					15 16						
				and the second	30 17	•	Sandy gravel (SP), dark gr odor	ay, coarse grained subangular g	jravel 1/4" to 1/2'	', wet, petroleum	
					18	 	•				
					19	$\left \right $	Clay (CL), olive brown, mo	isl. sliff, medium plasticity, petro	leum odor.		
					20	$\left \right $					

C	C		THE		_				BORING/WELL	. ID [.]	
anvir	onmer	hal	Sou	IRE	CE C	R	OUP, INC.			SB-2	
ROJE		ME AN	D ADD	RESS	5:	AB&	Foundry		Project No.	01-ABI-001	
ORIN	G LOC	ATION	(AT SI	<u>(31</u>		3 10	000 Gallon USTs		Logged By:	Nathan Collon	
ONTR	acto	R AND	EQUIP	MEN	T:	Viror	nex Geoprobe				
AMPL	ING M	ETHO);			Cont	inuous	MONITORING DEVICE:	MiniRae 2000	_	
TART	DATE	(TIME):			10/3	0/2007 11:15	FINISH DATE/ TIME	10/30/2007 12:4	45	
IRST	WATER	R (BGS):			18'		STABILIZED WATER LEVEL	:		
SURFA	CE EL	EVATIO	DN:					CASING TOP ELEVATION:			
OTAL	BORI	IG DEF	PTH(S):			25'		BORING DIAMETER/DEPTH:	3 1/4" / 25		
Date/Time	Sample Interval	PID (ppm)	Recovery	Shatgraphy	Depth (feet)	Water-tevel		LITHOLOGIC DESCRIPT n, color, moisture, density, grain ES ARE APPROXIMATE UNLE	n size/plasticity, o		Well construction
		1400			20						
					21 22		Sandy gravel (SP), coarse	grained, sub-angular 1/4" lo 1/2	", poorly sorted,	wet, na odar.	
					23		Clay (C1) medium brown	wel, tight, medium plasticity, no			
	\ge	2			24						
					25			Bottom of Boring 25			
					26						
					27		_				
					28						
					29						
					30		-				
					31						
					33						
					34						
					35						
					36						
					37		•				
					38 39		•				
					40						

S	G		THE				_		BORINGAVELL	ID:	
enviro	onmen	ital	501	JR	GE	GR	oup, Inc.			SB-3	
PROJE		ME AN		RES	S:	AB&	Foundry		Project No.	01-AB}-001	
BORING	S LOC	ATION	(AT SI	TE):		3 10	000 Gallon USTs		Logged By:	Nathan Coltor	n
CONTR	ACTO	RAND	EQUI	PMEN	IT:	Vira	nex Geoprobe				
SAMPL	ING M	ETHO	D:			Cont	anona	MONITORING DEVICE:	MiniRae 2000		
START	DATE	(TIME):			10/3	0/2007 1340	FINISH DATE/ TIME	10/30/2007 142	20	
FIRST V	VATER	R (BGS):			21'		STABILIZED WATER LEVEL	:		
SURFA	CE EL	EVATI	ON:					CASING TOP ELEVATION:	T		
TOTAL	BORIN	IG DE	PTH(S));		25'		BORING DIAMETER/DEPTH:	3 1/4" / 25		
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feel)	Water- la vel	(classificatio ALL PERCENTAG	LITHOLOGIC DESCRIPTION n. color, moisture, dansily, grain ES ARE APPROXIMATE UNLE	size/plasticity, ol	har) STATED	Welt construction
					0		Cement debris.				
	X			1	2 3		-Gravely sand (SP) with ch	unks of asphall, reddish brown, i	molst. sub-angula	ər, (fill),	
					4		Gravely sand (SP) with ch	unks of asphall, reddish brown, i	moist, sub-angula	ar, (fill).	
					5		No recovery.				
					7		-				
	-	140			8						
					9						
					10		-				
					12		Clay (CL), gray, wet, soft, i	medium plasticity, petroleum odo	or.		
	ļ				13		-				
	\ge	120			14		-				
					16	\vdash	-				
					t7		-				
	-				18	+	1				
					19						
	\ge	112			20		Clay (CL), gray, wet, stiff, i	medium plasticity, petroleum odo	.10		

S	G		ГНЕ		_		-		BORINGWELL				
envira	onmen	tal	501	JR	CE (iR	oup, Inc.			SB-3			
ROJE	CT NA	ME AN	D ADD	RESS	à:	AB&	l Foundry		Project No.	01-ABI-001			
ORINO	G LOC	ATION	AT SI	TE):		3 10	000 Gallon USTs		Logged By:	Nathan Collo	ภ		
ONTR	ACTO	r and	EQUIP	MEN	ĭ:	Viror	tex Geoprobe						
AMPL	NG M	ETHO):			Cont	່ດນວນຮ	MONITORING DEVICE:	MiniRae 2000				
TART	DATE/		.):			10/3	0/2007 13:40:00 AM	FINISH DATE/ TIME	1.0/30/2007 14:	20:00 AM			
IRST V	NATER	(BGS):			21'		STABILIZED WATER LEVEL:					
URFA	CE ELI	EVAT	ON:					CASING TOP ELEVATION:					
OTAL	BORIN	IG DEI	THIS):			25'	-	BORING DIAMETER/DEPTH:	3 1/4" / 25'				
Date/Time	Sample Interval	Р{D (ррт)	Recovery	Stratigraphy	Depth (feet)	Water-tevel	(Cassificatio ALL PERCENTAG	LITHOLOGIC DESCRIPTI n, color, molsture, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, o	ther) E STATED	Well construction		
					20	Y							
					21		Sand (SP), medium graine	d, wet, loose, no odor.					
					23		Sandy gravel, coarse grained, sub-angular 1/2" to 3/4", poorly sorted, no odor.						
	$\overline{}$	0			24	<u> </u>	Silty clay (CL), light to med	ium brown, wet, stiff, medium pl	asticity, no odor.				
					25			Bottom of Boring 25'					
	<u> </u>				26	-							
					27	-							
					28								
					29								
					30								
					31								
					32								
					33								
					34		-						
					35 36								
					37	-							
					38								
					39								
					40								

•

· .

Q	C	1	THE						BORINGWELL	. 1D:			
envir	onmen	ital	Soi	URC	CE	G R	oup, Inc.			SB-4			
PROJE		ME AN		REŚ	S:	AB&	I Foundry		Project No.	01-ABJ-001			
BORIN	G LOC	ATION	(AT S	ITE):			0,000 Gallon USTs		Logged By:	Nathan Coli	on		
ONTR					IT:	Viror	nex Geoprobe			•			
AMPL	ING M	ЕТНО);				inuous	MONITORING DEVICE:	MiniRae 2000	ŭ			
TART	DATE		:			10/3	0/2007 14:30	FINISH DATE TIME	10/30/2007 15:2	20			
IRST	WATER	R (BGS);			21 5		STABILIZED WATER LEVEL	-				
SURFA	CE EL	EVATIO	ЭN:					CASING TOP ELEVATION:					
OTAL	BORIN		TH(S)):		24.		BORING DIAMETER/DEPTH;	3 1/4" / 24				
Da(e/Time	TAL BORING DEPTH(S): Date/Lime Sample Interval PID (bbm) Recovery Stratignaphy					Water-leve)		LITHOLOGIC DESCRIPTI n, color, molsture, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, of		Well construction		
					0	-	Cement debris.						
				-	2		Gravely sand (SP) with ch	unks of asphall, reddish brown.	moist, sub-angula	ər, (fīll).			
	\ge		-		3		-						
						-	Clay (CL), black, moist, stiff, medium plasticity, no odor.						
							No recovery.						
					6		-						
					8		Clay (CL), black, moist, su	ff, medium plaslicity, no odor					
					9		-						
	\bowtie				10								
					11		-						
					12		-						
					13								
127	×				14								
		700			15		-						
					16								
			<u> </u>		18		_						
					19		-						
					20								

C	C	Ĩ	THE						BORINGWELL	. ID:	
envire	олтеп	ital	Sol	JRO	CE C	IR	OUP, INC.			SB-4	
PROJE		ME AN	D ADD	RESS): 	AB&	Foundry		Project No.	01-A81-001	
BORIN	G LOC	ATION	(AT SI	TE):		3 10	000 Gallon USTs		Logged By:	Nathan Cotton	١
CONTR	ACTO		EQUIP	MEN	τ:	Viron	iex Geoprobe				
SAMPL	ING M	ETHO	2:			Cont	กมอบร	MONITORING DEVICE:	MiniRae 2000		
START	DATE	TIME):			10/31	0/2007 14:30	FINISH DATE/ TIME	10/30/2007 15:2	20	
IRST	WATER	BGS)r.	_		21.5		STABILIZED WATER LEVEL:			
SURFA		EVAT	DN:					CASING TOP ELEVATION:			
TOTAL	BORIN	IG DE	TH(S)	:		24'		BORING DIAMETER/DEPTH:	3 1/4" / 24'		
Dale/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feet)	Water-level	(dassificatio ALL PERCENTAG	LITHOLOGIC DESCRIPTI n. color, moisture, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, p	ther) E STATED	Well construction
					20	-	Gravely sand (SP) with				
						T	Sandy gravel, coarse grain	ed, sub-angular 1/4" (o 3/4", we	L, no odor.		
							Clay (CL), black, molst, stiff, medium plasticity, no odor				
					24	<u> </u>	Refusal @ 24' Battom of Boring 24'				
					25		•				
					26						
					27						
					28						
					29						I
					30						
					32		-				
					33		-				
					34						
					35						
					36 		-				
					37	<u> </u>	-				
					39		-				
					40						

C		1	HE						BORING/WELL	(D ¹	
enviro	Dawner Dawner		Soi	JR	CE (G R	OUP, INC.		9	SB-5	
PROJE		ME AN	D AD[RES	S :	A8&	Foundry		Project No.	01-ABI-001	
BORING	G LOC,	ATION	ATS	ίτε):		3 10	000 Gallon USTs		Logged By:	Nathan Collo)n
CONTR	ACTO		EQUI	PMEN	17:	Virol	nex Geoprobe				
SAMPL		ETHO):			Cont	ที่มากการ	MONITORING DEVICE:	MiniRae 2000		
START	DATE/	TIME):			10/3	1/2007 8:00	FINISH DATE/ TIME	10/31/2007 B:52	2	
FIRST V	VATER	(BGS):			21 5		STABILIZED WATER LEVEL:			
SURFA	CE ELI	EVATIO	DN:					CASING TOP ELEVATION:			
TOTAL	BORIN	IG DEF	PTH(S)):		25'		BORING DIAMETER/DEPTH;	3 1/4" / 25'		
Date/TIme	Semple Interval	PID (ppm)	Кесочелу	Stratigraphy	Depth (feel)	Water-tevel		LITHOLOGIC DESCRIPTION, color, moisture, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, ot		Well construction details
					0						-
					2		Cement debris. Clay (CL), black with piece odor.	s al gravel 3/4" subangular, ligh	L medium plastic	ity, petroleum	-
	\ge	~			Ĕ	\uparrow					
	Х				1						
					5		No recovery.				
					7 8 9		Clay (CL), black, moist, stil	f, medium plasticity, petroleum o	odor.		
					10 11 12		Clay (CL), olive brown, stif	l, moist, medium plasticity, petro	iabo musl		
					13			Colistance in stars brown asis			
	Х				14		-	of a light gray to olive brown colo			
		200			16		Clay with trace sill (CL), lig	ht to medium gray, wet, soft, per	lroleum odor.		
					17	$\left \right $					
					18						Í
	-				19		Lizy (UL), light to medium	gray, wei, soft, low plasticity, pe	udieum ogol.		
	\bowtie	700			20						

S	G		CHE	_	_				BORINGAWELL			
envis	onman	(ate	501	IR	GE C	jR	DUP, INC.			SB-5		
ROJE	GTNA	ME AN	םםא מ	RESS	S:	AB&	Foundry		Project No.	01-ABI-001		
ORIN	G LOC,	ATION	(AT S)	TE):		3 10	000 Gallon USTs		Logged By:	Nathan Colton		
ONTR	ACTO	R AND	EQUIP	MEN	T:	Viror	ex Geoprobe			_		
AMPL	ING MI	ETHOD):			Cont	ຳກັນດຸມຮ	MONITORING DEVICE:	MiniRae 2000			
TART	DATE	(TIME):			10/3	1/2007 800	FINISH DATE/ TIME	10/31/07 852			
IRST V	WATER	1 (BGS):			21.5		STABILIZED WATER LEVEL:				
URFA	CE EL	EVATIO	DN:	_				CASING TOP ELEVATION:				
OTAL	BORIN	IG DEF	TH(9):			25'		BORING DIAMETER/DEPTH:	3 1/4" / 25'			
Date/Time	Sample Intervel	PID (ppm)	Kecovery	Stretigrephy	Depth (teel)	Water-levei	(classificatio ALL PERCENTAG	LITHOLOGIC DESCRIPTI n, color, moisture, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, o	ther) E STATED	Well construction	
					20		Silly clay (CL), light to med	ium gray, wel, soft, low plasticity	y, petroleum odor			
					22		andy gravel (SP), coarse grained, 1/4" to 3/4" subangular gravel pieces, poorly sorted, wet, o odor. Hay (CL), light brown, moist, stiff, medium plasticity, no odor.					
					23							
					24	-	Clay (CL), light brown, moist, stiff, medium plasticity, no odor.					
					25			Bottom of Boring 25'				
					26							
					27							
					28							
					29 30							
	-				31							
					32							
					33							
					34							
					35							
					36							
					37 38							
					39							
					40	_						

V	G		THE			_			BORINGWELL	ID.			
envir	onmer	tal	Sol	JR	CE (R	OUP, INC.			SB-6			
PROJE		ME AN		RES	9;	AB&	Foundry		Project No.	01-ABI-001			
BORIN	G LOC	ATION	AT SH	TE):			DO gal VST		Logged By:	Nathan Colto	n		
CONTR	ACTO	RAND	EQUIP	MEN	IT:		nex Geoprobe						
SAMPL	JING MI	ETHO);			Com	inuous	MONITORING DEVICE:	MiniRae 2000				
START	DATE	(TIME	:):			11/5	/2007 900	FINISH DATE/ TIME					
	WATER					6.5		STABILIZED WATER LEVEL	:				
	CEEL							CASING TOP ELEVATION:					
	BORIN			:		24'		BORING DIAMETER/DEPTH:	3 1/4" 24'				
									1		۲.		
Date/Time	Sample Interval	PID (ppm)	Кесочегу	Stratigraphy	Depth (feel)	Waler-ievel	(classification ALL PERCENTAG	LITHOLOGIC DESCRIPTI n. ക്രിar. moisture, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, ol	her) STATED	Well construction		
					0						-		
						<u> </u>	Cement debris.	1 0					
		5			2		julay (UL), black, moist, stil	ff, medium plasticity, organic od	or, chunks of grav	vel.			
					3								
		-			4								
	\ge				5	<u> </u>	1						
					6		-						
					7		-						
					8	-	-						
					9	ļ	Clau (CL) dade star (2 EV	111) will madium algorithm fall	t astroloum ada				
	\bowtie	20					Ciay (CL), Uaix gray (2.54	4/1), stiff, medium plasticity, fair	it petroleum adoi				
					10								
					1]								
					12		Clay (CL), dark greenish g	ray (GLEY 2 4/1), moisl, tight, m	edium plasticity.	nd odor.			
					13		1						
					14		-						
	\vdash	5			15	+	Silty clay (CL), moist, soft,	low plasticity, no odor.					
					16	┢	-						
					- 17		Same as above but tighter						
					18	 	-						
		L	L					. Shahi magaliya waxaning ay					
					19		Clay (CL), light gray, moisi 	, tight, medium plasticity, no odd	pr.				
					20		20' 24' - No recovery -						

.

Ĉ	C		THE						BORINGWELL	ID:				
envir	nemna	Ital	Sol	JR	CE (GR	OUP, INC.		:	SB-7				
PROJE		ME AN	D ADD	RESS	B:	AB&	I Foundry		Project No.	01-ABI-001				
BORIN	G LOC	ATION	(AT SI	TE):			ehouse		Logged By:	Nathan Cotto	n			
	ACTO	R AND	EQUIF	MEN	T:	Viro	nex Geoprobe			•				
						Мас		MONITORING DEVICE:	MiniRae 2000					
START	DATE):			1	1/07 1045	FINISH DATE TIME	10/31/07 1200					
	WATER	-				17'		STABILIZED WATER LEVEL	1					
	CE EL							CASING TOP ELEVATION:						
	BORIN					20'		BORING DIAMETER/DEPTH:	20,					
				İ		<u> </u>		Derting Birthe FEIdber FI	20		c			
Date/Time	Sam pie I nterval	PID (ppm)	Recovery	Stratigraphy	Depth (faat)	Water-leve	(classification ALL PERCENTAG	LITHOLOGIC DESCRIPTION n, color, moisture, density, grain ES ARE APPROXIMATE UNLE	size/plasticity. ol	her) STATED	Well construction			
					٥									
					1		Concrete debris sliff.							
		7.6			2									
					3] Clay (CL), black, moist, me	on odor?		-				
					4			łay (CL), black, moist, medium plasticity, slight hydrocarbon edor?						
	\boxtimes				5									
					6		Clay (CL), very dark gray (Nasticity no odou						
					7									
					8	<u> </u>								
					9		1							
					10		Same as above bul dark y	ellawish brown (10YR 4/4)			Γ			
					11		-							
		140			12		Ciay (CL), dark greenish g	ray (GLEY1 5/1), molst, stiff, me	dium plas(icity, p	eiroleum odor	' 			
	-				13		(faint).	-	-					
		500			14		1							
	\ge				15	 	- Silly day (CL), dark oreeni	sh gray, wet, soft, low plasticity.	no adar.					
					16	\uparrow								
					17		1							
					18		Clay (CL). dark greenish g	ray, moist, stiff, medium plassich	y, no odor.					
					19		Silly gravel (SP) graanish	gray, 1/4" subangular, moist, po	oily sorted no or	זסר				
					20		ן טיייא שימיבו (טר), קופפרואה	arat, wa sanongarar, most pa	any aoneo, no or	- 101 <u>-</u>				

C	C		HE						BORINGWELL	ID:				
enviro		lai	Sol	UR	CE	GR	GUP, INC.		5	SB-8				
PROJEC	CT NA	ME AN		DRES	S:	AB8	Foundry		Project No.	01-ABI-001				
BORING	S LOC	ATION	(AT S	ITE):		Ware	ehouse		Logged By:	Nathan Coltor	 ו			
CONTR	ACTO	R AND	EQUI	PMEN	NT:	Viron	ex Geoprobe							
SAMPLI		ЕТНОС):			Macr	91000	MONITORING DEVICE:	MiniRae 2000					
START	DATE/		1:			10/3	1/07 1240	FINISH DATE/ TIME	10/31/07 1340					
FIRST	VATER	(BGS):			17'		STABILIZED WATER LEVEL:						
SURFAG								CASING TOP ELEVATION:						
				ĸ		20'		BORING DIAMETER/DEPTH:	201					
Date/Time	AL BORING DEPTH(S):				Depth (feel)	Water-leve!		LITHOLOGIC DESCRIPTION, color, moislure, density, grain ES ARE APPROXIMATE UNLE:	DN size/plasticity, oth		Well construction			
					1		Cement debris.				1			
					2		Sandy gravel (asphal(), bla	ck, dry, poorly sorted, no odor.			1			
							Clay (CL), dark brown/blac	Clay (CL), dark brown/black, moist, stiff, medium plasticity, no odor.						
					6 7		Clay (CL), dark olíve brown, moist, stiff, medium plasticity, no odor.							
					8									
					9		Same as above but olive b	rown, more sill component.						
					10									
		16			11		Clay (CL), dark bluish gray	(GLEY2 4/1), moist, stiff, medlu	m plasticity, faint	petroleum odor.				
					13									
	\ge				14		Same as above but strong	er petroleum odor.						
		544			15	ß								
					(6									
					17									
					18			ravel, wet, soft, low plasticity, no						
					19		Clay (CL), medium gray, m	olst, stilf, medium plasticity, no o	ador					
					20			Total Depth 20'						

C	G		TH E						BORINGWELL	10:	
envir		Lai	Sol	JRI	CE C	GR	oup, Inc.			SB-9	
PROJE	GT NA	ME AN	D ADC	RES	B:	A88	l Foundry		Project No.	01-ABI-001	
BORIN	GLOC	ATION	(AT SI	TE):			ehouse		Logged By:	Nathan Colic	חכ
CONTR	LACTO		EQUIP	MEN	Τ:	Viror	lex Geoprobe			•	
SAMPL	ING M	ETHOL):			Cont	inuous	MONITORING DEVICE:	MiniRae 2000		
START	DATE	TIME):			10/3	1/07 1335	FINISH DATE/ TIME	10/31/07 1420		
FIRST	WATER	(BGS):			17'		STABILIZED WATER LEVEL:	1		
SURFA	CEEL	ΕνΑτιά	DN:]		CASING TOP ELEVATION:			
TOTAL	BORIN	IG DEF	PTH(S)	rt -		20'		BORING DIAMETER/DEPTH;	20'		
Dale/Time	Sample Interval	PID (ppm)	Кесочегу	Stratigraphy	Depth (feet)	Waler-level		LITHOLOGIC DESCRIPTION, color, moisture, density, grain ES ARE APPROXIMATE UNLE:	size/plasticity, oil		Well construction
					0		Cement debris.				-
			-		2		Sandy gravel (asphali), bla	ck, dry, poorly soried.			-
			-		3						
					4						
					5		Clay (CL), dark gray, moist	, stiff, medium plasticity, no odo	r.		
					6						
					7		Clay (CL), dark bluish gray	, moist, medium plasticity, faint p	oeiroleum odor.		
					9						
-					10		Strönger petroleum ödor.				
		25			10						
					12		Petroleum odor.				
	-				13						
	-	30			14	L					
					16						
					17	.	No recovery				
	\vdash				18						
					19						
	1				20			Bottom of Boring 20'			1

S	G		HE			_			BORING/WELL	- 1D:			
envire		Ital	So	UR	CE	G R	OUP, INC.		5	SB-10			
PROJE	CT NA	ME AN		DRES	i S :	AB&	Foundry		Project No.	01-ABI-001			
BORIN	G LOC	ATION	(AT S	ITE):		550	Gal VST		Logged By:	Nathan Colto	n		
CONTR	ACTO	R AND	EQUI	РМЕ}	NT:	Viror	nex Geoprobe						
SAMPL	ING M	ЕТНОС) :			Cont	inuous OW	MONITORING DEVICE:	MiniRae 2000				
START	DATE	(TIME):			10/3	1/07 1430	FINISH DATE/ TIME					
FIRST	VATER	R (BGS):			Now	rater	STABILIZED WATER LEVEL	:				
SURFA	CE EL	EVATIO	ÓN:					CASING TOP ELEVATION:					
TOTAL	BORIN		TH(S]:		30'		BORING DIAMETER/DEPTH:	3 1/4" / 30'				
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	o Depth (feet)	Water-level		LITHOLOGIC DESCRIPTI n, color, moisiure, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, of		Well construction		
							Concrete debris.	Concrete debris.					
					2		Sandy gravel (asphall), dry	, 1/2" subangular, poorly sorted	. no odor.				
					4		Same as above but petrole	um odor					
	\geq				5		-						
		700	-		6		Clay (CL). dark bluish gray	(GLEY 2 4/1), moist (wet?), sof	t, low plasticity, p	etroleum odor.			
		300			7								
					8								
	X	500			9								
			L		10								
					12		Pelrolaum odor.						
					13								
		400			14		1						
		-00			15								
					16								
		20			17								
					18		Less of an odor						
					20								
	\bigtriangledown	20											

C	C	1	THE						BORINGAVELL	, ID:	
				UR	CE	R	OUP, INC.		5	SB-10	
PROJE		ME AN		DRES	is:	AB&	Foundry		Project No.	01-ABI-001	
BORING	LOC	ATION	(AT S	ITE}:		550	Gal VST		Logged By:	Nathan Colto	n
CONTR	ACTO	R AND	EQUI	PME	NT:	Vicor	nex Geoprobe				
SAMPL		ETHO) :			Cont	Innora DM	MONITORING DEVICE:	MiniRae 2000		
START	DATE):			10/3	1/07_1430	FINISH DATE/ TIME			
FIRST	VATER	r (BGS):			Now	rater	STABILIZED WATER LEVEL:			
SURFA	CE EL	EVATK	ON:					CASING TOP ELEVATION:			
TOTAL	BORIN	IG DEF	≥тн(s):		30'		BORING DIAMETER/DEPTH:	3 1/4" / 30'		
Dale/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Oepth (feel)	Waler-level		LITHOLOGIC DESCRIPTION 1, color, moislure, density, grain ES ARE APPROXIMATE UNLE:	size/plasticity, of		Well construction details
					1		Concrete debris.				
	X				2 3		Sandy gravel (asphall), dry	r, 1/2" subangular, poorly sorted,	no odor.		
	X		-		4	Kar.	Same as above but petrole	പസ റ്റെ			
		700			5		Clay (CL), dark bluish gray	(GLEY 2 4/1), moist (wet?), soft	l, low plasifcity, p	etroleum odor.	
		300			6 7						
					8						
		500			9						
					10		-				
					11		Petroleum odor.				
					-13						
		400			14		-				
	<u> </u>				15						
					16						
		20			18		Less of an oder.				
					19						
	\times	20			20	├					

-

C	G	1	THE						BORINGWELL	10;	
олvine		tal	Sol	U R (CE	GR	oup, Inc.		5	5B-11	
PROJE		ME AN	D AD	DRES	S:	AB&	Foundry		Project No.	01-ABI-001	
BORING	S LOC	ATION	(AT S	ITE):			Gallon USTs		Logged By:	Nathar Colto	n
CONTR	ACTÓ	R AND	EQU	PMEN	π:	Visor	ex Geoprobe				
SAMPL	ING MI	ETHO):			Cont	INUOUS	MONITORING DEVICE:	MiniRae 2000		
START	DATE/	(TIME):			11/1	2007 7:45	FINISH DATE/ TIME	11/1/2007 9:40		
FIRST	VATER	(BGS):			20.5		STABILIZED WATER LEVEL:			
SURFA	CE ELI	EVATIO	DN:					CASING TOP ELEVATION:			
TOTAL	BORIN	IG DEF	TH(S):		25'		BORING DIAMETER/DEPTH:	3 1/4" / 25'		
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feel)	Water-level	(classification ALL PERCENTAG	LITHOLOGIC DESCRIPTION n, color, moisture, density, grain ES ARE APPROXIMATE UNLES	size/plasticity, of	her) STATED	Well construction
					0		Clay (CL), light and mediu	m brown, wei, stiff, medium plas	licity, no odor		
	X				2 3		Sandy gravel (asphall), dry	y, poorly sorted, no odor.			
		14			4		Clay (CL), black, stiff, med	ium, plasticity, faint petroleum of	dor,		-
	$ \frown $	14			5						
					6		Clay (CL), greenish gray (C	3LEY/ 5/1), molst, stiff, medium ;	plasticity, petrole	nu oqor	
					7						
					8						
	\boxtimes				9 10						
					11						
					12						
		L	`		13						
	X				14						
					15		Clay (CL) greenich groww	/ medium brown, moist, stiff, les	s n(a natroleum	ndo: noticed	
					17		- 	/ mediam orawn, moisi, still, les	s or a perioreum		
					18		Clay (CL), same as above.	, bul with a higher grit content, m	iore wet, medium	ו שנסועיה.	
					19						
					20		Silly clay (CL) (higher silt c odor.	xonteni Ihan above), medium bro	wn, wel, stiff, lov	v plasticity, no	

2	C.		THE		_	•	_		BORINGWELL	ID:	
envir	onmen	təl	So	UR	CE (GR	oup, Inc.		5	SB-11	
ROJE	CT NA	<u>ME</u> A		DRE	SS:	AB&	Foundry		Project No.	01-ABI-001	
ORIN	G LOC	ΑΤΊΟ	N (AT :	SITE)	:	550 (Sallon USTs		Logged By:	Nathan Colton	
ONTE	ACTO	R AN	DEQU	IPME	NT:	Viron	ex Geoprobe				
AMPL	ING M	етно)D:			Cont	້າມວບຮ	MONITORING DEVICE:	MiniRae 2000		
TART	DATE	(TIM	IE):			11/1/	2007 7:45	FINISH DATE/ TIME	11/1/2007 9:40		
	WATE	_				20.5		STABILIZED WATER LEVEL			
	CE EL					1		CASING TOP ELEVATION:			
	BORI			3):		25		BORING DIAMETER/DEPTH:	3 1/4" / 25'		
Date/Time	Sample Interval	PID (ppm)	Recovery	Strallgraphy	Dep(h (feal)	Water-Jevel	(classificatio	LITHOLOGIC DESCRIPT In, color, moisture, density, gratr SES ARE APPROXIMATE UNLE	ION h size/plasticity, of	ther) E STATED	Well construction
				20		Clay (CL), light and medium brown, wel, stiff, medium plasticity, no odor.					
					21						
					22						
					23						
	\times				24						
					25						
					26						
					27						
					28						
					29						
					30						
					31						
					32						
					33						
	-				34						
					35						
					36						
					37						
					38						
					39						
					40						

C	C		THE						BORINGWELL	. 10;					
envir	onmen	ita)	So	UR	CE (GR	oup, Inc.		5	SB-12					
PROJE	CT NA			ORES	i s :	AB&	I Foundry		Projact No.	01-A81-001					
BORING	G LOC.	ATION	AT S	SITE :			Gallon USTs		Logged By:	Nathan Colto	n				
CONTR					NT:	Vira	nex Geoprobe								
SAMPL	ING M	ETHO):				inuous dw	MONITORING DEVICE:	MiniRae 2000						
START	DATE):				/2007 9.30	FINISH DATE/ TIME	11/1/2007						
RST						22		STABILIZED WATER LEVEL							
SURFA	_	-	-				-	CASING TOP ELEVATION:	<u> </u>						
OTAL						25'		BORING DIAMETER/DEPTH:	3 1/4" / 25						
											Well construction				
Date/Time Sample Interval PID (ppm) Recovery				Stratigraphy	Deplh (feel)	Water-Isvel	(classification ALL PERCENTAG	LITHOLOGIC DESCRIPTION (classification, color, moisture, density, grain aize/plasiticity, other) ALL PERCENTAGES ARE APPROXIMATE UNLESS OTHERWISE STATED							
					0		Cement debris.								
				and the second	2	<u> </u>									
	\boxtimes				3		Søndy gravel (asphali), bla	ack, dry, poorly sorted.							
					4	†—	Clay (CL), black, moist, sti	ff, medium plasticity, no odor			-				
	\bigcap				5										
					6		-								
					7										
	<u> </u>				8										
	$\overline{}$	0			9		Clay (CL), greenish gray, r	noisi, stiff, medium plasticity, no	odàr						
					10										
					١										
		20			12		Same as above but faint p	etroleum odor noled.							
					13										
	\boxtimes	800			14		_								
					15		1								
					16 17	ļ	Clay (CL), dark greenish g	ray (GLEY 1 4/1), moist, stiff, me	dium pasticity, p	elroleum odor.					
					18	-									
					18										
					20										
	$\mathbf{\nabla}$	0		V/////			Same as above but lighter	petroleum odar noted							

C	C		THE						BORING/WELL	_ 10:			
enviro	оптел	tal	So	UR	ĊE	Gr	OUP, INC.			SB-12			
PROJE		ME A			SS:	AB&	l Foundry	Project No.	01-ABI-001				
BORIN	G LOC	ATIO	N AT	SITE));	550	Gallon USTs	Logged By:	Nathan Colton				
CONTR	ACTO	RAN	DEQL	JIPME	ENT:	Viror	nex Geoprobe						
SAMPL	ING M	ETH	DD:			Cont	ínuous dw	MONITORING DEVICE:	MiniRae 2000				
START	DATE	/ (TIN	1E):			11/1	/2007 9:30	FINISH DATE/ TIME	11/1/2007				
FIRST	RST WATER (BGS): JRFACE ELEVATION:							STABILIZED WATER LEVEL	:				
SURFA	CEEL	EVA	<u>гю</u> N:					CASING TOP ELEVATION:					
TOTAL	BORI	NG D	EPTH(S) :		25'		BORING DIAMETER/DEPTH:	3 1/4" / 25				
Date/Time	Sample Interval	PID (ppm)	Кесочегу	Stratigraphy	Depth (feel)	Water-level	(dassificatio ALL PERCENTAG	LITHOLOGIC DESCRIPT n. color. moisture, density, grair ES ARE APPROXIMATE UNL	n size/plasticity, c	other) E STATED	Well construction		
					20		Clay (CL), medium brown,	moist, stiff, medium plasticity, n	a odor.				
					22		Clay (CL), medium brown, wet, softer, medium plasticity, no odor.						
					23 24		-						
	\boxtimes	0			25			Bottom of Baring 25'					
						ļ		Bottom of Boring 20					
					26								
					27								
					28								
					29		-						
					30		-						
		<u> </u>			31		-						
					32		-						
	<u> </u>				33	+							
					34								
					35								
	<u> </u>				36								
					30								
					_								
					38								
					39								
					40								

S	G		HE			_			BORINGWELL		
envín	onmen		Sou	IRC	CE (R	DUP, INC.		S	6B-13	
ROJE		ME AN	D ADD	RESS	5:	ABS	l Foundry		Project No.	01-AB1-001	
ORIN	GLOCA	ATION	(AT SN	rE):			Gallon USTs		Logged By:	Nathan Collo	'n
	ACTO	RAND	EQUIP	MEN.	T:	Viror	nex Geoprobe				
AMPL		ETHOD):			Сопі	inuous DW	MONITORING DEVICE:	MiniRae 2000		
TART	DATE	TIME):			11/1/	2007 11:20	FINISH DATE/ TIME	11/1/2007 12.00)	
IRST	NATER	(BGS):			22.5		STABILIZED WATER LEVEL			
	CE EL							CASING TOP ELEVATION:			
	BORIN					25'		BORING DIAMETER/DEPTH:	3 1/4" / 25		
Date/Time	Sample Intervet	PID (ppm)	Recovery	Stratigraphy	Depth (feet)	Water-fevel		LITHOLOGIC DESCRIPTI n, color, moisture, density, grain ES ARE APPROXIMATE UNLE	ON size/plasticity, ot		Well construction
					0		Cement debris				
					2		Sandy gravel (asphall), dr	y poorly sorted, no odor			
	\ge				3						
	\bowtie				5		Clay (CL), black, moisl, sti	ff, medium pasticity, no odor			-
					6		NR				
					7						
					8		Clay (CL), black, moist, sb	ff, medium pasticity, no odor			
	\bowtie	0			10						
		20			\$1						
					12		Clay (CL), greenish gray, s	shift, medium pastloty, petralaum	ador		
					13 14						
	\boxtimes	500			14						
					16		Same as above but softer,	more moist			
					17						
					18						
					19		Clay (CL), greenish gray, s	stiff, medium pasticity, petroleum	a odor		
	1	155			20	1					

C	C		тне						BORINGAVELL	ID:			
enviz		ita)	Sou	IRC	BE (R	DUP, INC.		9	SB-13			
RÔJE	<u>GT NA</u>	ME A		RESS	3 2	AB8	l Foundry	Project No. 01-ABI-001					
BORIN	G LOC	ATIO	N (AT SI	ſE):		550 (Gallon USTs	Logged By: Nathan Col					
ONTR	ACTO	RAN	D EQUIP	MEN.	T :	Viror	nex Geoprobe						
AMPL	ING M	ETHO	D:			Coni	Invous DW	MONITORING DEVICE:	MiniRae 2000				
TART	DATE		E):			11/1	/2007 11:20 F	INISH DATE/ TIME	11/1/2007 12:00	1			
IRST	WATER	₹ (BG	S):	_		22.5		STABILIZED WATER LEVEL:					
URFA	URFACE ELEVATION:						C	CASING TOP ELEVATION:					
OTAL	BORIN	IG DE	EPTH(S):			25'	E	BORING DIAMETER/DEPTH:	3 1/4" / 25'				
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feat)	Water-level	(dassification. ALL PERCENTAGE	LITHOLOGIC DESCRIPTI , color, moisture, density, grain S ARE APPROXIMATE UNLE	size/plasticity, of	her) E STATED	Well construction details		
					20								
21													
							Silty clay (CL), dark greenish	dor					
23					24	<u> </u>	-						
	\ge	60			25		Clay (CL), medium brown, m	nolst, stiff, no odor Bottom of Boring 25'			_		
					23			antron of anting xe					
					26		Note: PID reading 60 ppm at 25' but soil looks clean. Water from upper levels has drained into the lower soil sample. Possible cross contamination.						
					27								
					28								
					29								
					30								
					31		_						
					32		-						
	<u> </u>				33 34								
					35	ļ							
	<u> </u>				36	<u> </u>	-						
	<u> </u>				37								
					38		-						
	<u> </u>				39	-	-						
					40	-	-						

S	G		C C C		n = 1	P	OUP, INC.		BORINGAVEL		
enviro	on/nen	tal	20	UR	GE	Li R	UUP, INC.			SB-14	
PROJE	CT NA	ME AN	D AD	DRES	SS:	AB&	Foundry		Project No.	01-ABI-001	
BORING	S LOC	ATION	(AT S	iffe]:		550~	gallon US T a		Logged By:	Nathan Colle	on
CONTR	ACTO	R AND	EQU	PME	NT:	Viror	ex Geoprobe		11000		
SAMPL	ING M	ETHO	<u>):</u>			Cont	inuous dw	MONITORING DEVICE:	MiniRae 2000		
START	DATE	TIME):			11/1/	2007 12:50	FINISH DATE/ TIME	11/1/2007 13:4	10	
FIRST	NATER	R (BGS):			10.5		STABILIZED WATER LE	VEL:		
SURFA	CE EL	EVATIO	ON:					CASING TOP ELEVATIO	N:		
TOTAL	BORIN	IG DEP	PTH(S):		15		BORING DIAMETER/DE	PTH: 3 1/4" /15'		
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feet)	Water-level	(døssif ALL PERCEN	LITHOLOGIC DESCR ication, color, moisture, density, g ITAGES ARE APPROXIMATE L	grain size/plasticity, o	nher) E STATED	Well construction
					0		Concrete debris.				-
			<u> </u>		2		Sandy clay (fill), coar	se grained, black, moist, poorty s	orted, no odor.		\neg
	\sim				3			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
					4						
					5		No recovery				
					6						
					7						
				868	9	-					_
	\boxtimes				10		Gravelly day (CL), da	ark brown, wet, soft, 3/4" subang. ——	ular, no odor. 		_
	<u> </u>				11						
					12	$\left \right $	No recovery				
	'				13						
	X				14		Sandy gravel (SP), v	ery dark gray 1/4" lo 3/4", subang	gular, wel, loose, no i	odor	
					15			Battom of Boring	g 15'		
					18 17	<u> </u>					
					17	<u> </u>					
					19	<u> </u>					
	<u> </u>				20		•				

C	C	1	HE						BORINGAVELL	ID:	
enviro	onmen		So	UR	CE	GR	OUP, INC.		s	SB-15	
PROJE		ME AN		DRES	is:	AB&	l Foundry		Project No.	01-ABI-001	
BORIN	G LOC	ATION	(AT S	ITE):			Gallon USTs	Logged By:	Nathan Colton		
CONTR	ACTO	R AND	EQUI	PME		Viror	nex Geoprobe				
SAMPL	ING M	ETHO	;			Con	tinuous dw	MONITORING DEVICE:	MiniRae 2000		
START	DATE	(TIME):			11/1	/2007 13:42	FINISH DATE/ TIME	11/1/2007 14-30)	
FIRST	NATER	R (BGS):		_	5.5'		STABILIZED WATER LEVEL:			
SURFA	CE EL	EVATI	ON:					CASING TOP ELEVATION:	1		
TOTAL	BORIN	NG DE	PTHIS):		19 [.]		BORING DIAMETER/DEPTH:	3 1/4" / 19'		
Date/Time	Sample Interval	Recovery	Stratigraphy	Depth (feel)	Water-level		DN size/plasticity, or E UNLESS OTH		Well construction		
											-
	\ge				2		Concrete debris. Silty sand (SM), fine graind subangular, no odor.	ed, very dark brown, moist, well s	sorled, some grav	vel particles 1/2"	-
					3		שטטאיקטואי, הט ססטר.				
		Û			4	-					
					5						1
					8		-Gravelly sand (SP), fine gr	ained, black, 1/2° subangular, w	et, poorly sorted,	no odor.	
					7		Clay (CL), dark gray, mois	L medium plasticity, no odor.			
					8						
	\boxtimes				9						
	-	Ø			10 11		Clay (CL), greenish gray, i	noist, stiff, medium plasticity, fai	nt petroleum ada	ſ.	
		,			12		Silty clay (CL) with some g	ravel, greenish gray, moist, soft	er, petroleum odo	ot.	
					13]				
	\boxtimes	1200						1, maist, well sorter, petroleum a			
					15		Clay (CL), greenish gray, s	sliff, moist, medium plasticity, pe	troleum odor.		
					16 17		-				
					18	-	-				
	\ge	40			19		Same as above but no ode Refusal at 19' bgs, Bottom				
					20	<u> </u>	Lingar ar 1a, pås' pollou.	i or cound at 12			

S	G	i]	3HT	-		n			BORINGWELL		
envir	onmen	18)	501	JR(CE (i R	oup, Inc.		5	SB-16	
PROJE	CT NA	ME AN		DRESS	S:	A8&	l Foundry	Project No. 01-ABI-001			
BORIN	G LOC	ATION	(AT S	(TE):		Park	ing Lol		Logged By:	Nathan Collo	no
CONTR	ACTO	r and	EQUI	PMEN	Τ :	Viror	nex Geoprobe				
SAMPL	ING M	ETHOD):			Mars	ocere	MONITORING DEVICE:	MiniRae 2000		
START	DATE):			11/1	/2007 14 45	FINISH DATE/ TIME	11/1/2007 15 30)	
FIRST	WATER	R (BGS): 				·	STABILIZED WATER LEVEL:	10'		
SURFA	CE EL	EVATIO	<u>2N:</u>					CASING TOP ELEVATION:			
TOTAL	BORI	IG DEF	PTH(S)):		20'		BORING DIAMETER/DEPTH:	20'		
Date/Time	Sample Interval	PJD (ppm)	Recovery	Shaligraphy	Depth (feet)	Water-feve)		LITHOLOGIC DESCRIPTK on, color, moisture, density, grain SES ARE APPROXIMATE UNLES	size/plasticity, ot		Well construction
				┝─┤	0		Asphall				
					2		Gravelly sand (SM), black	, 1/2" subangular, dıy.			
					3		Clay (CL), some gravel, b	lack, moist, soft, medium plasticit	y, no odor		
					4						
					5		Cłay, błack, moisł, wood c	thips, light, medium plastloity, no	odor		
					6						
					7		•				
					8]				ľ
					9						
					10	ļ	-				
					11		-				
					13						
					14						
					15	-	Clay (CL), light brownish g	gray (10YR 6/2), moist, soft, high	plasticily, no odd)F	
					16						
					17						
					18		Clay (CL), grayish brown ((7 (YR 5/2) moisi, soit, high plasti	icity, no odor.		
					19		-				

5	C		THE			_	_		BORINGAWELL	. ID	
envir		ital	Sol	JRC	CE (G R	OUP, INC.		5	SB-17	
PROJE		ME AN		RESS	B:	A8&	} Foundry		Project No.	01-ABI-001	
BORIN	G LOC	ATION		TE);			ang Lot	Logged By:	Nathan Collon	n	
CONTR	ACTO	R AND	EQUIF	MEN	T:		nex Geoprobe				
SAMPL	ING M	ETHOD	 D:					MONITORING DEVICE:	MiniRae 2000		
START	DATE]:			11/1	/2007 1515	FINISH DATEJ TIME	11/1/2007 160)	
RST						15.5		STABILIZED WATER LEVEL	1		
SURFA							_	CASING TOP ELEVATION:			
TOTAL				:		20'		BORING DIAMETER/DEPTH	20'		
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feet)	Water-level		LITHOLOGIC DESCRIPTI n, color, maisture, density, gram ES ARE.APPROXIMATE UNLE	ON size/plasticity, ot		Well construction
					0	┼──	Concrete debris.				1
					2			el, black, moist. stiff, no odor			
	— —				3						
					4		Same as above with no gr	avel.			
					5		-				
					6		-				
					7		-				
					8						
					9						
					10						
					11 		Clay (CL), light grayish bro	own, moist, tight, no odar.			
					12						
					14		Clay (CL), same as above	bul sotter.			
					15						
					18		Gravel (GM), very dark gra	ay, wet, subangular, 1/4", no odo	н.		
					17	<u> </u>	1				
					18		Clay (CL), light to medium	gray, moist, stiff, medium plasti	city, по odor.		1
					19						
					20			Battom of Boring 20'			

S	G		rhe Sni	104	er f	Gр	OUP, INC.			B-18				
						T								
PROJE	_				S:		Foundry		Project No.	01-ABI-001	_			
BORING							ing Lot		Logged By:	Nathan Colton	1			
CONTR				PME	NT:	<u> </u>	nex Geoprobe							
BAMPL		_				Mac		MONITORING DEVICE:	MiniRae 2000					
START						11/5/	2007 12:45	FINISH DATE/ TIME	11/5/2007 13:45	>				
FIRST		_						STABILIZED WATER LEVEL:		_				
SURFA								CASING TOP ELEVATION:						
TOTAL		IG DE)	- (H(S			20 [.]		BORING DIAMETER/DEPTH:	2. 20		Well construction			
Date/Time	PID (ppm) Recovery Stratigraphy				Depth (feel)	Water-level	(classification ALL PERCENTAG	LITHOLOGIC DESCRIPTION (classification, color, moisture, density, grain size/plasticity, other) ALL PERCENTAGES ARE APPROXIMATE UNLESS OTHERWISE STATED						
					0		Asphall debris.				1			
					2	-		ne sand, grayish brown, soft/cru	mbly, no odor.		4			
					з									
					4		Clay (CL), dark brown, moi	ist, stiff, medium plasticity, no oc	lor.		1			
					5									
					6	-								
					7		-							
					8		-							
					9									
					10		-							
					11		Clay (CL), olive brown, mo	ist, soft, medium plasticity, no o	dor					
					12]							
					13		4							
					14	V	clay with some sand							
					15		- · ·	el 1/4" subangular and sand, me	dium grained, we	t, no odor, olive				
					16		brown.							
	L				17		_							
					18									
				Y//////										
			L		19 20						_			

C	G	1	HE						BORINGWELL	. ID:	
anviro	onmen	tal	Soi	UR	CE	Gr	oup, Inc.		5	SB-19	
PROJEC		ME AN	DAD	DRES	ss:	AB8	Foundry		Project No.	01-ABI-001	
BORING	G LOC,		AT S	irre):		Park	ing Lot		Logged By:	Nathan Coltor	- ת
CONTR	ACTO	R AND	EQUI	PME	NT:		ex Geoprobe			•	
SAMPLI	ING MI	ETHO):			Maci	то Т	MONITORING DEVICE:	MiniRae 2000		
START	DATE/):			11/5/	2007 10:30	FINISH DATE/ TIME	11/5/2007 11:1	5	
FIRST						17.5		STABILIZED WATER LEVEL:			
SURFA						-		CASING TOP ELEVATION:			
TOTAL	-			s):		20'		BORING DIAMETER/DEPTH:	2" 20		
				ĹΤ		1 <u> </u>					Ę
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feel)	Water-Jevel		LITHOLOGIC DESCRIPTION La color, moisilure, density, grain ES ARE APPROXIMATE UNLES	size/plasticity, ot		Well construction
					0	<u> </u>					-
				223	2		Cement debris. Gravelly clay (asphalt), dry,	lose no odor.			4
						<u> </u>					
					4						
					5						
					6		Clay (CL), very dark gray, n	noisl, stiff, no odor.			
					7						
					8	<u> </u>					
					9						1
	`				10						1
					11						1
		0.5			12		-				
					13			zy, almost black, with light gray.	streaks, moist, p	oorly sorted, no	
					14	ļ	odor. Clay (CL), medium gray, m	oist, stiff, medium plasticity, no	odor.	_	
					15		No recovery.				-
					16						
					17	V	Silty clay (CL), dark gray, w	ret, some gravel, soft, no odor			
					18		-				
					1 9		Clay (CL), medium brown,	moist, stiff, medium plasticity, or	o odor.		
					20	┼─~		Bottom of Boring 20'			-

C	C		HE						BORINGWELL	. ID.		
onvira	namno		So	URO	CE (GR	oup, Inc.		s	B-20		
ROJE	CT NA	ME AN	D A D	DRES	S;	AB&	Foundry		Project No.	01-ABL001		
BORING	GLOC	ATION	AT S	ITE):			ing Lol		Logged By:	Nathan Collo)n	
ONTR	ACTO	R AND	EQUI	PMEN	IT:		nex Geoprobe			•		
AMPL	ING M	ETHO):			Мас		MONITORING DEVICE:	MinIRae 2000			
-	DATE						2007 12:00	FINISH DATE/ TIME	11/5/2007 13:00)		
	WATER	· _				1		STABILIZED WATER LEVEL:				
	CEEL		_			1		CASING TOP ELEVATION:				
	BORIN			a-		20'		BORING DIAMETER/DEPTH:	2" 20'			
				<u>1</u>		20	[BORING DIAMETERDEF (TI.	2 20		_ <u>c</u>	
Da(e/Time	Sample Interval	PiD (ppm)	Recovery	Stratigraphy	Depth (feet)	Water-level	(classification ALL PERCENTAGE	LITHOLOGIC DESCRIPTION n, color, molsture, density, grain ES ARE APPROXIMATE UNLES	size/plasticity, of	her) E STATED	Well construction	
					0		Asphalt debris,				-	
					ž	\vdash		e sand, dark brown, moist, sliff,	medium plasticity	y, no odor.	-	
					3	-	•					
					4		-					
			-		5		Clay (CL), dark gray (bnck	plasticity, no od	or.			
					6		-					
					7							
					8		-					
					9		Same as above, no brick p	vieces.				
					10		-					
					11							
					12			ist, soft, medium plasticity, no o	dor		1	
					13							
					14							
					15							
					16		More moist, almost wet.					
					17		-					
					18				aiby as a day			
	19						Gravelly day (GC), onve b	prown, moist, stiff, medium plasti	ску, по одог	-	_	
	1		1		20			Bottom of Boring 20'			1	

C	C		HE						BORINGWELL	ID:	
envire	onmen		Soi	JRC	CE (GR	oup, Inc.		S	B-21	
PROJE		ME AN		RES	S:	AB&	Foundry		Project No.	01-ABI-001	
BORIN	a Loc		(AT S	ITE):			ing Lot		Logged By:	Nathan Colto	n
CONTR	ACTO		EQUI	PMEN	T:	Viror	nex Geoprobe				
SAMPL	ING M	ETHOD):			Mac	70	MONITORING DEVICE:	MiniRae 2000		
START	DATE	(TIME):			11/5	/2007 11:30	FINISH DATE/ TIME	11/5/2007 0:00		
FIRST	NATER	R (BGS):					STABILIZED WATER LEVEL:			
SURFA	CE EL	EVATIO	ON:					CASING TOP ELEVATION:			
TOTAL	BORIN	IG DEF	PTH(S)):		20'		BORING DIAMETER/DEPTH:	2" / 20'		
Date/Time	Sample interval	PID (ppm)	Recovery	Stratigraphy	Depth (feet)	Water-Jevel		LITHOLOGIC DESCRIPTION, color, moisture, density, grain ES ARE APPROXIMATE UNLES	size/plasticity, ot		Well construction
					0		Asphalt debris.				
					2		Silty clay (CL), olive brown,	, dry.			
		3									
					4		Gravelly clay (GC), dark gr	at, no odor			
					5		Red rock (brick pieces), dr	y			
					6						-
					7						
					8		Clay (CL) olive brown mo	ist, stiff, medium plasticity, no oc	lor.		
					9			-,,,,,,,,,,,,,,,,,			
					10 		-				
					12		-				
					13]				
					14		-				
					15	 	-				
					10		-				
					18						
					19		-				
					20 -			Bottom of Boring 20'			-

C	G	ו 🗄	THE		_	_			BORING/WELL	ID				
	nmer		Sol	JR	CE (GR	oup, Inc.		S	5B-22				
BLORG		ME AN	D ADD	RES	5;	AB&	l Foundry		Project No.	01-ABI-001				
BORING	S LOC	NOLTA	ATS	TE):		1	D gal TRA VST		Logged By:	Nathan Collo	מו			
CONTR	ACTO	R AND	EQUI	PMEN	T:		nex Geoprobe							
BAMPL		ETHO);	_		Cont	indous	MONITORING DEVICE:	MiniRae 2000					
START	DATE):			11/2	07 745	FINISH DATE/ TIME	11/2/07 645					
FIRST					_	9.		STABILIZED WATER LEVEL	:					
BURFA		EVATIO	DN:					CASING TOP ELEVATION:						
TOTAL	BORIN	IG DEF	- •TH(S)	;		15'		BORING DIAMETER/DEPTH	3 1/4" 15					
Date/Time	Sample Interval	PID (ppm)	Кесочегу	Stratigraphy	Depth (fcel)	Waler-level	(classificatio ALL PERCENTAG	LITHOLOGIC DESCRIPTI n, color, moisture, density, grain IES ARE APPROXIMATE UNLE	size/plasticity, of	ner) Stated	Well construction			
					0		Cement debris.							
					2		Clay (CL), very dark gray,	Nay (CL), very dark gray, molst, medium plasticity, no odor						
	4						Sandy sill (ML), fine graine	ed black, moist, loose, well sorte	d.		-			
					5 6		NR							
					7		Graveliy day (GC), dark g	ray, moisi, 1/2" to 3/4" subanguli	ai, poorly sarted.	no odor.				
		130			9									
		48			10 11		Gravelly clay (GC) with so slight oily sheen, no odor.	me medium gráined sand, dark	bluish gray, wel. (booily sorted,				
	4 	1.9			12		Gravelly sand, dark gray, v	wel, poorly sorted, no odor.						
	1				13		Clay (CL), light brownish g	irəy, moist very soft, medium pla	esticity, no odor.					
	\ge	0.7			14 15			Bottom of Boring 16'						
					16			-						
	17				17									
					18									
					19 20									
					20	1								

C	C		Î H E						BORINGAVELL	. ID;		
				UR	CE (Gr	OUP, INC.		5	B-23		
PROJE			-			1	Foundry		Project No.	01-AB-001		
BORING							D gal TRA VST		Logged By:	Nathan Colto	nc	
CONTR							nex Geoprobe					
SAMPL						1	muous DW	MONITORING DEVICE:	MiniRae 2000			
START			_			-	/2007 805	FINISH DATE/ TIME	11/2/2007 0:00			
FIRST						8.5		STABILIZED WATER LEVEL	_			
BURFA	_							CASING TOP ELEVATION:				
TOTAL				51:		15'		BORING DIAMETERIDEPTH	3 1/4" 15			
											ç	
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feet)	Water-Ievel		LITHOLOGIC DESCRIPTI n, color, moisture, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, ot		Well construction	
					0		Cement debris.					
		0.1			2		_	moist, medium plasticity, no odo)r.		-	
	X	0.,			3		-					
	0,1						Sandy silt (ML), fine grained, black, moist, loosa, no odor,					
	\sim				5							
					. 6		NR					
					7		1					
		0.4			8		Gravelly clay (GC), very da	ark gray, moist, poorly soned, no	o odor.			
	X	0.3			9		Gravelly sand (SP), very d	ark gray, medium grained, poor	ly sorted, no odor	, wel.		
					10							
					11		Gravelly clay (GC), dark gr					
					12		Clay (CL), blive brownish <u>c</u>	gray, moist, stift, medium plastic	ity, no odor.			
					13		-					
	\boxtimes	04			14			Bottom of Boring 15'	_		_	
					16		-					
					17		-					
					18							
					19	-						
				-	20	<u> </u>						

C	G	1	HE			_	_		BORINGWELL	, ID.	
enviro		(8)	501	UR	CE	Gr	OUP, INC.		S	SB-24	
PROJE		ME AN	D AD	DRES	is:	A88	Foundry		Project No.	01-ABI-001	
BORING	S LOC		AT S	ITE):		8,00	gal TRA VST		Logged By:	Nathan Collor	n
CONTR	ACTO	R AND	EQUI	PME	NT:	Viron	ex Geoprobe			-	
SAMPL		ETHO):			Cont	กมอบร	MONITORING DEVICE:	MiniRae 2000		
START	DATE	TIME);			11/2	2007 1000	FINISH DATE/ TIME	11/2/2007 1100	3	
FIRST V	VATER	(BGS):			7, 5 '		STABILIZED WATER LEVEL:			
SURFA	CE EL	EVATIO	SN:					CASING TOP ELEVATION:			
TOTAL	BORIN	IG DE	PTH(S	} ;		20		BORING DIAMETER/DEPTH:	3 1/4" / 20'		
Date/Time	Sample Interval	(mqq) Olq	Recovery	Stretigraphy	Depth (feet)	Water-fevel		LITHOLOGIC DESCRIPTION D. CORION, moisture, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, of		Well construction
					1		Cement debris				
					2	<u> </u>	Clay (CL), very dark gray, r	no odor.		1	
	\boxtimes				Э		Sandy silt (ML), fine graine	DØØF.			
	\times				4						
I					5		NR]
				r IIIIIIII	6		Sandy silt (ML), some grav	el, dark gray, moist, no odor.			-
					7		Gravel (GC), brown to dark	gray, wet, to 3/4" to 1" subangu	lar, poorly sorted	i, no odor.	-
					8					de l	
	\boxtimes				9 10	_	Siky Caby (CL), biblish gray,	moist, medium stiffness, mediu	m plasucity, no o	dor.	
		200			11						
		0.6			12	+	Clay (CL), bluish gray, moi	st, stiff, medium plasticity, no oc	O r .		
					13						
	X	0.3			14						
					15		Gravel (GC), dark gray, we	t, 3/4" to 1" subangular, poorly s	orted, no odor.		
					15						
					17						_
					19		Clay (CL), dark olive brown	n, moist, still, medium plasbeity,	no odor.		
		0.3			20			Bottom of Baring 20'			_

C	C	1	HE						BORINGAVELL	. 10.	
anvir			Soi	Ű R (CE (GR	OUP, INC.		9	SB-25	
PROJE		ME AN		DRES	S :	AB8	Foundry		Project No.	01-A8I-001	
BORIN	GLOC	ATION	(AT S	ITE):			uction Area		Logged By:	Nathan Coll	011
		R AND			IT:		nex Geoprobe	-			
SAMPL	ING M	ETHO) ;			Maci		MONITORING DEVICE:	MiniRae 2000		
START	DATE	/ (TIME	1:			11/2	/2007 1040	FINISH DATE TIME	11/2/2007 1110	٥	
		R (BGS				8.5		STABILIZED WATER LEVEL	:		-
URFA	CE EL	EVATI	ON:	_				CASING TOP ELEVATION:	~	_	
OTAL	BORI		PTH(S):		10'		BORING DIAMETER/DEPTH	2" 10"		
Date/Time	PID (ppm) Recovery Stratigraphy					Water-levet		LITHOLOGIC DESCRIPTI on, color, moisture, density, grain SES ARE APPROXIMATE UNLE	size/plasticity, of		Well construction
					0						_
					1		Cement debris.				
					2	1	Sand (SM), coarse, light t	nown, moisl, no adar.			
	L						Cłay (CL), black, moist si	iff, no odor,			
					3		NR				
					5		Clay (CL), some gravel, d	ark gray, moist, suff, no odor.			
					6		1				
					7		-				
					8		Gravelly clay (GC), some	sand, grained, 1/4" to 1/2" subar	ngular, dark gray,	wet book	
					9		sorted, rotten egg odor.		5		
					10			Bottom of Boring 10'			
					11						
	-				12						
)		13						
					}4						
					15						
					16						
					17	\vdash					
					18						
					20						
					-0						

S	G		THE			_	_		BORINGWELL	. ID:			
envin		tal	501	UR	CE (GR	oup, Inc.		S	SB-26			
PROJE	CT NA	ME AN	D ADD	RES	s:	A88	l Foundry		Project No.	01-ABI-001			
BORING	LOC	ATION	(AT SI	ITE):		Prod	luction Area		Logged By:	Nathan Colton	1		
CONTR	ACTO	R AND	EQUI	PMEN	it:	Viroi	nex Geoprobe			•			
SAMPL		ETHOD);			Мас	ro	MONITORING DEVICE:	MiniRae 2000				
START	DATE/	(TIME):			11/2	/2007 11315	FINISH DATE/ TIME	11/2/2007 120	0			
FIRST	_		_			13'		STABILIZED WATER LEV		·			
SURFA							•	CASING TOP ELEVATION					
TOTAL) ;		15'		BORING DIAMETER/DEP					
Date/Time	Sample Interval	P{D (ppm)	Recovery	Stretigraphy	co Depth (feet)	Water-level		LITHOLOGIC DESCRI Ition, color, moisture, density, g AGES ARE APPROXIMATE U	IPTION rain size/plasticity, of	her} E STATED	Well construction		
					1		Cement debris						
					2		Silt (ML), dark brown, n	poist, loose, no odor.					
							Gravelly sand (SP) with a very sticky black substance (tar?), moist, faint hydrocarbon odor.						
								moist, stiff, medium plasticity, n	· ·				
					5								
					6								
		400			7		Cłay (CL), bluish gray, i	noist, stlff, meðium plasticity, s	olvent odor?				
					8								
	\ge				9								
		1000			10								
					12		-						
					13								
				And	14		-	sh gray, wet, loose, solvent odd					
		\ge		4	15			gray, fine grained, wet, solveni moist, stiff, medium plasticity, s					
					16		Gray (GE), DIDISH Bray, I	Bottom of Boring		·			
					17								
					18								
					19		-						
					20	+					$\left \right $		

C	Ē		ME						BORINGWELL	, ID:	
envire	<u>Олтеп</u>			UR	CE (GR	OUP, INC.		s	6B-27	
PROJE						-	Foundry		Project No.	01-ABI-001	
BORING	S LOC		AT S	ITE):			DO gal VST		Logged By:	Nathan Co	
CONTR					NT:		ex Geoprobe			I	
SAMPL		THO):				inuos DW	MONITORING DEVICE:	MiniRae 2000		
START	DATE	(TIME):				2007 0710	FINISH DATE/ TIME	11/5/2007 830		
FIRSTV								STABILIZED WATER LEVEL:			
SURFA	_		-			<u> </u>		CASING TOP ELEVATION:			
TOTAL	BORIN	IG DEF	THIS):		15'		BORING DIAMETER/DEPTH:	3 1/4" 15'		
Dale/Time	Sample Interval	(mdq) OI4	Касоvалу	Stratigraphy	Depth (feel)	Waler-fevel	colassification ALL PERCENTAG	LITHOLOGIC DESCRIPTION n, color, moleture, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, of	her) E STATED	Well construction
					D 1		Cement debris.				
		13			2						
	\ge				3		Clay (CL), dark gray, molsi	atroleum odor.			
	X				4		While chalking substance,	crumbly.			
		• •			5		NR				
		0.2			6 7		Silly day (CL), dark gray, r	noist, soft, medium plashaity, far	ni petraleum odo	я.	
					8					¢	
	$\overline{}$				9		Clay (CL), dark gray, mois	t, stiff, medium plasticity. No odo	r,		
					10		, , (,	1J.			
					11						
					12		Same as above bul mediu	m brownish gray.			
					13		-				
	\bowtie	0			15			Bottom of Boring 15"			
					16	<u> </u>		5			
					17						
					18						
					19						
					20						

	C		THE						BORINGAVELL	ID:		
S	onmen		Sol	UR	CE (GR	oup, Inc.		5	B-28		
PROJE			DAD	RES	S:	A88	l Foundry		Project No.	01-A81-001		
BOR)N	G LOC	ATION	(AT S	ITE):			TZV leg 00		Logged By:	Nathan Colle	<u>ה</u>	
CONTR	ACTO	RAND	EQU)	PMEN	IT:	Viror	nex Geoprobe			_		
SAMPL	ING M	ETHO):			1	inuos	MONITORING DEVICE:	MiniRae 2000			
START	DATE):			11/2	2007 1500	FINISH DATE! TIME	11/2/2007 1610)		
FIRST						7,5		STABILIZED WATER LEVEL				
SURFA	-	-	-					CASING TOP ELEVATION:				
TOTAL):		20'		BORING DIAMETER/DEPTH:	3 1/4" 20'			
			<u> </u>	,. 		~ •					Ę	
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (fael)	Water-level		LITHOLOGIC DESCRIPTION In, COIOR, MOISTURE, density, grain SES ARE APPROXIMATE UNLE	size/plasticity, ot		Well construction	
					0						-	
					2							
					3							
				4								
					5							
				6	<u> </u>	Clay (CL), dark brown, mo	ist, stiff, medium plasticity, no oc	sor.				
		02			7		Gravelly clay (GC) with fin	e sands, very dark brown, wel, p	oorly sorted, soft	, no odar.	-	
					8		Clay (CL), very dark gray,	moist slift on odor				
					9			e sands, very dark brown, wel, p	oorly sorted, soft	no odor		
	\boxtimes	0.2										
					10	1		na fan nadista an think			_	
					11			ery fine particles, crumbles. wel, poorly sorted, faint petroleur	n odor		-	
		0.1			• •			ist, stiff, medium plasticity, faint				
					12			stiff, medium plasticity, no odor.				
					13							
-	\boxtimes				14							
					15		Sand (SP), medium grain(ed Trace gravel, light gray, wet, w	ell sorted, loose,	n'o orior.	-	
					16				tudio		_	
					17		ulay (UL), medium biown	ish gray, moist, stiff, medlum plat	ଗୋମ୍ଟା ମହି ବିଥିବିହିଲି ।			
			<u>.</u>		18	-						
						Bottom of Boring 20'						

C	C	1	THE						BORINGAVELL	. ID:		
BNVire	onmen	(a)	So	UR	CE (GR	OUP, INC.		S	SB-29		
PROJE	CT NA	ME AN	DAD	DRES	S:	AB&	I Foundry		Project No.	01-ABI-001		
BORIN	G LOC	ATION	AT S	ITE):		10,0	00 gal VST		Logged By:	Nathan Colton	1	
CONTR	ACTO	R AND	EQUI	PME	NT:	Viron	nex Geoprobe					
SAMPL	NG M	ETHO):			Cont	inues	MONITORING DEVICE:	MiniRae 2000			
START	DATE	(TIME	.):			11/5	2007 900	FINISH DATE/ TIME				
FIRST	WATE	R (BGS):			6.5		STABILIZED WATER LEVEL				
SURFA	CE EL	EVATIO	ON:					CASING TOP ELEVATION:				
TOTAL	BORI	(g dej	PTH(S):		15		BORING DIAMETER/DEPTH:	3 1/4" 15'			
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feel)	Water-level		LITHOLOGIC DESCRIPTI n, color, moisture, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, of		Well construction	
					0		Cement debris.				-	
					2	-	Clay (CL), lots of fine sand	e sleeve?) dry, sl	light peiroleum od			
					3							
					5		No recovery.	<u> </u>			1	
					4							
						<u> </u>					-	
					5		Clay (CL), dark brown, mol	ist, stiff, medium plasticity, no oc	101.			
	\boxtimes				6							
					7		illy day (CL), dark gray, wet, loose, no odor.					
		0,2			8							
	\triangleright				9		Clay (C)) dade amy maist	t, stiff, medium plasticity, no odo	r same mols			
					10		oray (oc), dan giay, moisi	, sin, medium pizsikaly, 10 000	1, 30me (0013.			
					11							
					12		Clay (CL), light brown to ar	ray, moist, stiff, medium plasticit	y, trace rocks (1/4	4" round), no		
					13		odor.					
		Q. 1			14							
					15			Bottom of Boring 15'				
					16							
					17							
					18		No water recovery at 15' Collected sample via hydropunch, screened 15' - 20' bgs.					
					19							
					20							

C	C		THE						BORING/WELL	ID:			
envire	onmen	tal	Sou	JR	CE (ЯR	OUP, INC.		S	B-30			
ROJE	CT NA	ME AN	DADD	RES	S:	A8&	f Foundry		Project No.	01-ABI-001			
BORING	G LOC	ATION	(AT SI	TE):			00 gal VST		Logged By:	Nathan Colt	on		
ONTR	ACTO	RAND	EQUIP	MEN	т:		nex Geoprobe				2		
AMPL	ING M	ETHO);				inuous	MONITORING DEVICE:	MiniRae 2000				
TART	DATE	(TIME):			11/2	/2007 1345	FINISH DATE/ TIME	11/2/07 1445				
IRST	NATER	R (BGS):			10'		STABILIZED WATER LEVEL			-		
URFA	CE EL	EVATIO	ON:					CASING TOP ELEVATION:		_			
OTAL	BORIN	IG DEF	PTH(S)	:		15'		BORING DIAMETER/DEPTH:	3 1/4" 15'				
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feet)	Water-level	(classificatio ALL PERCENTAG	LITHOLOGIC DESCRIPTI n, color, moisture, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, ot	her) E STATED	Well construction		
					0								
					2		Cement debris. Gravelly sand (asphalt), da	ark gray, loose, dry, no odor.			_		
	\times				3								
					4		Clay (CL), dark gray, mois	t, stiff, medium plasticity, no odd	or.				
	\square				5								
					6	▼	NR						
				<	7		Gravelly sand (SP), dark t	prown, moist, loose, poorly sorte	d, no odor.				
					9		-				84		
	\ge				10		Clay (CL), medium gray,				1		
					11		-						
					12		-						
					13	†	-						
					14		Clay (CL), dark brown, mo	bist and wet, soft, low plasticity, r	a odor.				
					15			Bottom of Boring 16'					
					16								
					17		_						
					18		-						
				<u> </u>	19 20								
					20								

5	G		THE		_		_		BORINGAWELL					
οπνίεο	onman	rtai	501	JRC	CE (GR	oup, Inc.		5	B-31				
PROJE	CT NA	ME AN	D A DD	RES	<u>.</u>	A88	I Foundry		Project No.	01-ABI-001				
BORIN	G LOC	ATION	(AT SI	TE);			ing Lot		Logged By:	Nathan Colic	on			
CONTR					Y:		iex Geoprobe			•				
SAMPL						Maci		MONITORING DEVICE:	MiniRae 2000					
START	DATE/):				/07 1430	FINISH DATE TIME						
FIRST	NATER	R (BGS):					STABILIZED WATER LEVEL:						
SURFA	CE ELI	EVATIO	DN:					CASING TOP ELEVATION:						
TOTAL	BORIN	IG DEF	PTH(S)	12		25'		BORING DIAMETER/DEPTH:	2" 25					
Date/Time						Water-level	clessificatio) ALL PERCENTAG	LITHOLOGIC DESCRIPTION (classification, color, moisture, density, grain size/plasticity, other) ALL PERCENTAGES ARE APPROXIMATE UNLESS OTHERWISE STATED						
					1						-			
	X				2		Gase Jammed. Sample no	n removed.						
					3									
	\ge				4				-					
					6		NR							
					7									
		0.1			8		Clay (CL), black, moist, sti	ff, medium plasticity, no odor						
					9		-							
		0.1			10		-							
					11									
					12									
					13									
					15				4					
					16		CIBY (CL), ORVE DOWN, MO	ist, stiff, medium plasticity, no or	וסנ					
					17									
					18									
					19		4							
	1				20					0	-			

C	C	1	THE			_			BORINGAWELL	ID;				
envire		ntal	Sou	R	CE	ì R	DUP, INC.			SB-31				
PROJE	CT NA	ME A	ND ADD	RESS	S:	AB&) Foundry		Project No.	01-ABI-001				
BORING	G LOC	ATIO	N (AT SI	ΓE):		Park	ing Lot		Logged By:	Nathan Collon				
CONTR	IACTO	R AN	D EQUIP	MEN	Т:	IONIV	nex Geoprobe							
SAMPL	ING M	ETHO	D:			Мас	0	MONITORING DEVICE:	MiniRae 2000					
START	DATE	/ (TIM	E):			11/5	07 1430	FINISH DATE TIME	11/5/07 1545					
FIRST	WATE	(BG	S):					STABILIZED WATER LEVEL:						
SURFA	CEEL	EVAT	ION:					CASING TOP ELEVATION:						
TOTAL	BORI	IG DI	EPTH(S):			25'		BORING DIAMETER/DEPTH:	2" 25'	_				
Date/Time	Date/Time Sample Interval PID (ppm) Recovery Stratigraphy				Depth (feet)	Water-tevel	(classification ALL PERCENTAG	LITHOLOGIC DESCRIPTI n. color, moisture, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, of	ther) E STATED	Well construction			
							Same as above but softer.	ame as above but softer.						
					22									
					23 24	_	Clay (CL), gravelly clay, dark brown, moist, very stiff, medium plassicity, no odor.							
	<u> </u>													
	ļ				25			Bottom of Boring 25						
					26									
					27									
					28									
					29									
					30									
					31									
					33	 								
					34									
					35									
	-				36									
					37									
					38									
					39									
					40									

	G		THE		_		-		BORINGWELL				
enviro	nmen		501	JR	CE (iR	oup, Inc.		5	B-32			
PROJEC		ME AN	D ADD	RES	s :	AB&	l Foundry		Project No.	01-A8I-001			
BORING	LOC	ATION	(AT SI	TE):			ing lot		Logged By:	Nathan Colt	lon		
ONTR	ACTO		EQUI	MEN	T :		nex Geoprobe						
SAMPL	ING MI	ETHO):			Mac	·o	MONITORING DEVICE:	MiniRae 2000				
START	DATE/):			11/2	6/2007 753	FINISH DATE/ TIME	11/26/2007				
IRST V	VATER	(BGS):			10'		STABILIZED WATER LEVEL	.:				
SURFAG	CE ELI	EVATIO	DN:					CASING TOP ELEVATION:					
TOTAL	BORIN	IG DEF	TH(S)	:		20'		BORING DIAMETER/DEPTH	: 2" 20				
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (leel)	Water-level	(classificatio ALL PERCENTAG	LITHOLOGIC DESCRIPT n, color, moisture, density, grain IES ARE APPROXIMATE UNLI	n size/plasticity, of	her) STATED	Well construction		
				-	D 1	-	Asphall debns.		-		-		
-					2	+	Gravelly sill (ML), medium	ted, no odor, fill		\neg			
					3								
					4		lay (CL), dark gray, moist, stiff, medium plasticity, no odor.						
					5								
					6								
					7								
					8 9		Light gray.						
	_	r			10		-						
					11								
					12		-						
					13								
					14		More moist						
					15 16								
		ļ			17		-						
					18		Greater sill content, more	moisi					
					19		Clay (CL), dark grayish br	own, moist, sliff, medium plastic	sily, no odor.				
					20			Bottom of Boring 20					

	G		THE		-	_	_		BORINGAVELL	ID.		
envin	onmer		501	JR	CE	GR	OUP, INC.		5	B-33		
PROJE	CT NA	ME AN		RES	S:	AB&	I Foundry		Project No.	01-ABI-001		
BORIN	GLOC		ATS	TE):			ing lot		Logged By:	Nathan Colto)n	
	асто	R AND	EQUI	MEN	T:	1	nex Geoprobe 6600			•		
		ETHOD				Маси		MONITORING DEVICE:	MiniRae 2000			
START	DATE	/ (TIME	.):			11/20	6/2007 1030	FINISH DATE/ TIME	11/26/2007			
FIRST	WATER	R (BGS):			17.5		STABILIZED WATER LEVEL	:			
SURFA	CE EL	EVATI	DN:					CASING TOP ELEVATION:				
OTAL	BORI	NG DEF	PTH(S)	e		20'		BORING DIAMETER/DEPTH:	2" 20'			
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feel)	Water-tevei		LITHOLOGIC DESCRIPTI In. color. moisture, density. grain IES ARE APPROXIMATE UNLE	size/plaslicity, of		Well construction	
					1		Gravelly clay (fill).				-	
					2		NR					
					3							
					4							
					5							
	ļ				6 7							
					8		-					
				<u> </u>	9		-					
		0.3			10		Clay (CL), light grayish bro	own, moist, stiff, medium plastici	ly, no odor, Irace	red (brick?)	-	
					11		fragments. Olive brown with no brick					
					12		-					
					13		-					
					14	1	1					
					15 16		Olive to light brown (tan),	moisl, sliff, medium plasticity, no	odor			
					10		Light gravish brown, well a	soft, medium plasticity, no odor.				
					18							
					19		Medium brown, moist, stif	f, medium plasticity, no odor.				
					20		1	Bottom of Boring 20'			-	

S	G		THE				_		BORINGWELL				
envir	onmer	ital	501	JR	CE	G R	oup, Inc.		S	B-34			
PROJE	CT NA	ME AN		RES	S;	AB8	l Foundry		Project No.	01-ABI-001			
BORIN	G LOC	ATION	(AT SI	TE):			ing lat		Logged By:	Nathan Coltor	n		
CONTR	OTDAS	RANO	EQUI	MEN	۲:		nex Geoprobe 6600			•			
BAMPL	ING M	ETHO):			Mac	70	MONITORING DEVICE:	MiniRae 2000				
START	DATE	/ <u> </u> TIME	:):			11/2	6/2007 1030	FINISH DATE/ TIME	11/26/2007				
FIRST	WATER	R (BGS):			17.5		STABILIZED WATER LEVEL					
SURFA	CE EL	EVATI	ON:					CASING TOP ELEVATION:					
TOTAL	BORI	IG DE	PTH(S)):		20'		BORING DIAMETER/DEPTH:	2" 20				
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feat)	Water-tevel	(Classificatio ALL PERCENTAG	LITHOLOGIC DESCRIPTION n. color, moisture, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, ol	her) STATED	Well construction		
					1		Gravelly clay (fill).						
					2	+	NR				1		
					3								
					4								
					5								
					6		-						
					8	+							
				<u> </u>	9	-							
					10		Clay (CL), plive brown, mo	ist, medium tightness, medium j	plasticity. no cdoi	·			
					11	+-	-						
		1.1			12		Clay (CL), trace gravel, mi	edium grayish brown, maist					
					13								
					14			moist, stiff, medium plasticity, n					
					15 16		Gravelly day (CL), mediur	n drown, moisi, poorly sorred, ne	odor.				
					17		Clay (CL), olive brown, mc	oist, stiff, medium plasticity, no o	dor				
					18								
		0.4			19								
_				1	20			Bottom of Boring 20'					

C	G		FRE						BORINGWELL	. {D:	
anvin		tal	So	UR	CE	Gr	oup, Inc.		S	6B-35	
PROJE				DRES	SS:	A8&	Foundry		Project No.	01-ABI-001	
BORING	G LOC	ATION	(AT S	ITE):		Park	ing lat		Logged By:	Nathan Coltor	٦
CONTR	ACTO	RAND	EQUI	PME	NT:	Vivor	ex Geoprobe				
SAMPL	ING M	ETHO) :			Con	inues	MONITORING DEVICE:	MiniRae 2000		
START	DATE		; }:			11/2	5/2007 114D	FINISH DATE/ TIME	11/26/2007 123	30	
FIRST		R (865):			11.5		STABILIZED WATER LEVE	_:		
SURFA	CE EL	EVATI	אט:					CASING TOP ELEVATION:			
TOTAL	80R()	G DE	PTH(S	; }:		15'		BORING DIAMETER/DEPTH	1: 2" 15'		
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feel)	Water-level	classificati ALL PERCENTA	LITHOLOGIC DESCRIPT on, color, moisture, density, grai GES ARE APPROXIMATE UNL	n size/plasticity, ot	her) E STATED	Well construction
					0		Hand auger to 5' bgs,				-
				-	2	-					
					3						
					4						
					5		NR				
					8						
					7						
					8						
		0.6		9111178	9						
					10 11			moist, soft, medium plasticity, n		he amuslik slav	
					12	+	black, very wel, loose, no	wet, water moving soil sample g odor.	ravel. Appears to	Ce Glavelly Cay,	
					13		Gravelly sand (SP), dark	gray, wet, loose, poorly sorted, i	16 odor.		
					14			st, stiff, medium plasticity, no oc			1
					15			Bottom of Boring 18	•		1
_					16						
					17						
					18						
·		L			19						
					20						

Page 1 of 1

	G	1	THE D		4	—	oup, Inc.		BORINGWELL			
BOVID	onmen	tal	501	UR	CE	i R	OUP, INC.		5	SB-36		
ROJE	CT NA	ME AN		DRE	ss:	AB8	l Foundry		Project No.	01-481-001		
SORIN	G LOC	ATION	(AT S	ITE):	;		ing lot		Logged By:	Nathan Colton		
	ACTO	RAND	ΕΩυι	PME	NT:		nex Geoprobe			.		
SAMPL	ING M	ETHO) :				inues	MONITORING DEVICE:	MiniRae 2000			
START	DATE):			11/2	5/2007 1300 <u> </u>	FINISH DATE/ TIME	11/26/2007 14	00		
FIRST	WATER	₹ [8GS	.):			11.5		STABILIZED WATER LEVEL:				
SURFA	CEEL	EVAT	ON:			_		CASING TOP ELEVATION:				
TOTAL	HIROB	IG DE	PTH(S):		15'		BORING DIAMETER/DEPTH:	2" 15'			
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feet)	Water-leve/		LITHOLOGIC DESCRIPTION, COLOR, MOISTURE, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, of			
					0 1		Sill (ML) (Ight gray/white, d	in comply og odor fill				
					2		ill (ML), light gray/white, dry, crumbly, no odor, fill.					
					4							
					5 6		NR					
					7							
					8							
					9							
					10	-						
					11	V	Very wel, water in empty sl	leeve.				
					12							
					13							
							Gravel (GP), dark gray, we	t, loose, poorly sorted, 1/4" - 1/2	" subangular, no	odor.		
					15 16	<u> </u>		Bottom of Boring 15'				
					17							
	1											
				Γ	18							
					18 19							

C	C	1	THE						BORINGAVELL	, ID [.]			
envir	onmar		Soi	JR	CE (GR	OUP, INC.		5	SB-37			
PROJE						-	Foundry	*-	Project No.	01-ABI-001			
BORING							ing lot		Logged By:	Nathan Coll	οn		
CONTR					T:		nex Geoprobe 6600			I			
SAMPL						Маси		MONITORING DEVICE:	MiniRae 2000				
START	DATE	(TIME):				6/2007 1110	FINISH DATE/ TIME	11/26/2007				
RST						17.5		STABILIZED WATER LEVEL	:				
SURFA	CE EL	EVAT	ON:					CASING TOP ELEVATION:					
TOTAL	BORI	G DE	PTH(S)):		20'		BORING DIAMETER/DEPTH	2" 20'				
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (teet)	Water-level		LITHOLOGIC DESCRIPT n, color, moisture, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, of		Well construction		
					0 1		Cement debris, fill.						
		<u> </u>			2			sı, sliff, medium plasticily, no o	dor		_		
					3								
					4								
					5	<u> </u>	-						
					6		-						
			-		7								
					8		Some gravel, subangular	1/4" diameler					
		0.4			S)		_						
					10		Clay (CL), grayish brown, i	moist, stiff, medium plasticity, n	o <mark>od</mark> or.				
					11								
					12		Olíve brown, moist, mediu	m stiffness, medium plasticity, r	io odor				
					13								
					14								
					15								
					16			ad, plive brown, wet, lopse, well					
					17		Clay (CL), grayish brown.	moist, stiff, medium plasticity, n	o odor.				
-		 			18		1						
_					19								
					20			Bottom of Boring 20					

C	0		THE						BORINGAVELL	.ID:			
envir		ntel	Sol	UR	CE (GR	OUP, INC.		S	B-38			
PROJE	CT NA	ME AN		RES	3:	AB&	Foundry	· · · ·	Project No.	01-ABI-001			
BORIN									Logged By:	Nathan Colto			
CONTR					T:	WD	C Geoprobe 7730DT			1.222			
SAMPL		ETHO);	-			continuous	MONITORING DEVICE:	MiniRae 2000				
START	DATE): 			-	08 900	FINISH DATE/ TIME	7/8/08 1300				
FIRST						19.5		STABILIZED WATER LEVEL:	the second s		_		
SURFA			-	-				CASING TOP ELEVATION:	-				
TOTAL				1:		44'		BORING DIAMETER/DEPTH:	4" 44'	-			
				Γ									
Date/Time	PID (ppm) Recovery Stratigraphy					Water-level	(classificatio ALL PERCENTAG	LITHOLOGIC DESCRIPTION n, color, moisture, density, grain ES ARE APPROXIMATE UNLES	size/plasticity, ot	her) STATED	Well construction		
					0								
					1		Cement debris, fill.	ncrete?), dark gray, soft, modera	to algoritative faint	odor	-		
					2		(petroleum?)	nciele /), dank gray, son, modera	te plasticity, faint				
					3								
					4		Clay, dark gray, moist, soft, moderate plasticity, no odor						
		0.3			5	<u>1 –</u>	Clay, dark gray, moist, soft, moderate plasticity, no odor						
					6 		•						
					ê		Clay, alive brown, maist, s	oft, moderate plasticity, no odor					
		1.4			8								
					10								
					11		same as above, moist to w	ret ler					
			- · ·		13								
					14	\vdash							
		0.3			15	-	Sandy Clay, olive brown, s Clay, olive brown, moist, s	ome gravel, 1/4" subangular, we	ll graded, med-g	rained, no odor	4		
		3.6			16								
					17								
					18								
					19 20								

5	G		THE		_		_		BORINGWELL	, 1D:				
envire	onmer	ntal	Sol	JRC	EE	R	OUP, INC.			SB-38				
ROJE		ME A		RESS	:	AB&	I Foundry		Project No.	01-ABI-001				
ORING	G LOC	ATIO	N (AT SI	TE):					Logged By:	Nathan Collon				
ONTR	ACTO	R AN		MENT	:	WDO	C Geoprobe 7730DT			-				
AMPL		ETHO	DD:			325	continuous	MONITORING DEVICE:	MinìRae 2000					
TART	DATE	(T)M	iE):			7/8/0	000 80	FINISH DATE/ TIME	7/8/08 1300					
RST	WATE	२ (8G	is):					STABILIZED WATER LEVEL:						
URFA	CE EL	EVAI	TION:					CASING TOP ELEVATION:	_					
DTAL	BORI	NG DI	EPTH(S):	-		44'		BORING DIAMETER/DEPTH:	4" 44					
Date/Time	Sample Interval	PID (ppm)	Кесочегу	Stratigraphy	Depth (feet)	Water-level		LITHOLOGIC DESCRIPT n, color, moisture, density, grain CENTAGES ARE APPROXIMA	size/plasticity, o		Well mostruction			
		1.9			20									
					22		Silty Clay, olive brown, mol	st, soft, low plasticity, no odor			i			
	23					- S	Silly Sand, olive brown, medium-grained, some gravel, 1/2" subangular, well graded, no odor							
					24		Issity Sand, olive orown, me	subangular, we	i graded, no odol					
					25									
					26									
			-		27		Clay, olive brown, some gr	evel, 1/4" subangular, moist, slif	f, low plasticity, n	o odor	4			
					29		Gravelly Sand, medium gra	ained, 1/2" subangular, moist, w	ell graded, no ode	or				
					30		Clay, medium brown, wet,	stiff, moderate plasticity, no odo	r					
					31		-							
					32		Silt, medium brown, wel, se	oft no odor						
					33		Clay, light gray, moist, stiff,	moderate plasholty, no odor						
					34		-							
					38		same as above, soft, moist	to wet						
					37									
					38		-							
					39									
					40	<u> </u>	1							

C	C	MAME AND ADDRESS:	_		_		BORINGAVEL	L ID:			
envin	onmer	าเล่	Sou	IRC	CE C	<u>i</u> R	oup, Inc.			SB-38	
ROJE	CT NA	ME A	ND ADD	RESS	i:	AB8	Foundry		Project No.	01-ABI-001	
BORIN	<u>G LOC</u>		N (AT SI	re):					Logged By:	Nathan Collor	<u>ו</u>
CONTR	UTDAS	RAN	D EQUIP	MEN	T:	WDO	Geoprobe 7730DT				
SAMPL	ING M	ETHO	DD:	_		325	suountmoc	MONITORING DEVICE:	MiniRae 2000		
START	DATE	אַוד) ו	1 <u>6)</u> :			7/8/0	8 900	FINISH DATE/ TIME	7/8/08 1300		
FIRST	WATE	R (BG	iS):					STABILIZED WATER LEVEL:			
SURFA	CE EL	EVAT	rion:					CASING TOP ELEVATION:			
TOTAL	BORI	NGD	EPTH(S);			4 4 '		BORING DIAMETER/DEPTH:	4" 44'		
Date/Time	1.9				Depth (feet)	Water-level	(dassificatio ALL PERC	LITHOLOGIC DESCRIPTI n. color, moisture, density, grain ENTAGES ARE APPROXIMAT	size/plasticity,	other) HER	Well construction
				40							
	41 42 43				-						
					44						-
					45						
					46						
					47						
					48						
					49						
					50						
					51 52						
					53						
					54						
					55						
	-				56	-					
					57						
					58						
					59 60						
					00						

S	G		CHE Do-		or f	\	DUP, INC.		BORINGAVELL		
envin	onmer	tal	JUC	JK	GE E	IK	UUP, INC.			B-39	
PROJE	CT NA	ME AN	D ADD	RES	S:	AB&I	Foundry		Project No.	01-ABI-001	
BORING	G LOC.	ATION	(AT SI	TE):					Logged By;	Nathan Cott	0D
ONTR	ACTO	R AND	EQUIF	MEN	T:	WDC	Geoprobe 7730DT				
BAMPL	ING M	ETHO):			325 c	zontinuous	MONITORING DEVICE:	MiniRae 2000		
START						7/8/0	8 1355	FINISH DATE/ TIME	7/8/08 1645		
FIRST			·					STABILIZED WATER LEVEL			
SURFA							i	CASING TOP ELEVATION:			
TOTAL	BORIN	IG DEP	PTH(S)	:		43'		BORING DIAMETER/DEPTH:	4" 43'		
Date/Time	Date/Time Sample Interval PID (ppm) Recovery Stratigraphy					Water-level	(classificati ALL PERCENTA	LITHOLOGIC DESCRIPTI on, color, moisture, density, grain GES ARE APPROXIMATE UNLE	size/plasticity. ot	her) E STATED	Well construction
					0						\neg
					2						
					3						
					4						
					5						
					6						
					8						
					9						
					10						
					11						
					12 13						
					13						
					15						
					18						1
					17	Į					
					18						
					19						

C	C		THE						BORINGAWELL	.1D:				
	onmer	าเอเ	Sou	JR	CE (R	OUP, INC.			SB-39				
PROJE		ME A		RESS	;:	AB8	l Foundry		Project No.	01-ABI-001				
BORIN	G LOC		N (AT SI	rek:					Logged By:	Nathan Colton				
					T:	WDO	C Geoprobe 7730DT							
SAMPL	ING M	ЕТНО	- 	_			continuous	MONITORING DEVICE:	MiniRae 2000					
START	DATE	/ (TIM	1E):			7/8/0	8 1355	FINISH DATE/ TIME	7/8/08 1645					
FIRST	NATE	₹ (BG	is):					STABILIZED WATER LEVEL:						
SURFA	CEEL	EVA1	NON:					CASING TOP ELEVATION:						
TOTAL	BORI		EPTH[\$]:			43'		BORING DIAMETER/DEPTH:	4" 43'					
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feet)	Water⊰evel	(classificatio ALL PER(LITHOLOGIC DESCRIPT(n, color, moisture, density, grain CENTAGES ARE APPROXIMA	size/plasticity, o	ther) HE	Well construction			
		7			20		Clay, olive brown to med. E	Brown, molst, stiff, low plasticity,	no odor					
					21 22									
					23									
		~~~			24		Clay, black, moist, soft, moderate plasticity, no eder							
		2			25									
					28		same as above, bluish g	ray, very stiff						
					28									
					29									
					30									
		4.4			31		Sandy Clay, medium bro	own, fine-grained, wet, no od	or					
					32 33		Clay, medium brown, mois	t, stiff, moderate plasticity, no od	101					
			-		34									
		2			35									
					36									
					37									
					38		Silly Clay, olive brown, moi	st, stiff, moderate platicity, no oc	jor					
					40									

S	G		THE			_	oup, Inc.		BORING/WELL	
	onmer	ntal	501	JR	BE (	i R	OUP, INC.			SB-39
ROJE	CT NA	ME A		RESS	i:	AB&	I Foundry		Project No.	01-ABI-001
ORINO	<u>s loc</u>	ATIO		FE):					Logged By:	Nathan Colton
ONTR	ACTO	R ANI		MEN'	T:	WD	C Geoprobe 7730DT			
AMPL	ING M	ETHO	D:			325	continuous	MONITORING DEVICE:	MiniRee 2000	
TART	DATE	/ (TIM	E):			7/8/0	8 1355	FINISH DATE/ TIME	7/8/08 1645	
RSTV	NATER	R (BG	S):					STABILIZED WATER LEVEL		
JRFA	CE EL	EVAT	<u>10N:</u>					CASING TOP ELEVATION:		
TAL	BORI	IG DE	PTH(S):			43'		BORING DIAMETER/DEPTH:	4* 43'	
Date/Time	Sample Interval G. PID (ppm) Recovery Stratigraphy				Depth (fact)	Water-level	(dassificatio ALL PERC	LITHOLOGIC DESCRIPTI n, color, moisture, density, grain ENTAGES ARE APPROXIMAT	size/plasticity, o	ther) ER
	-	Ö.5			40		Clay, dark brown, very stiff	(lough drilling), moist, moderate	plasticity, no od	or
			3		41					
			100		42					
					43		Rofusal at 43'			
		_	_		44					
					45					
					46					
					47		-			
					48		-			
					49		-			
	ļ				50 51		-			
	<u> </u>				51		-			
	<u> </u>			-	53	$\vdash$	-			
					54		-	x		
					55		-			
	-				56		-			
					57					
					58					
					59					
					60	1				

C	G	1	HE						BORINGWELL	. ID:				
envir	onmer	ital	Sou	JR	CE (	GR	OUP, INC.		S	B-40				
PROJE	CT NA	ME AN		RES	S:	AB&	Foundry		Project No.	01-ABI-001				
	G LOC.					1	· · · · · · · · · · · · · · · · · · ·		Logged By:	Nathan Collor	<u>ר</u>			
	ACTO		1000000		<b>T</b> :	WDO	Geoprobe 7730DT							
	ING M						continuous	MONITORING DEVICE:	MiniRae 2000					
	DATE		-			-	8 640	FINISH DATE/ TIME	7/9/08 900					
	WATER					110/0		STABILIZED WATER LEVEL						
	CE EL		_			-		CASING TOP ELEVATION:	<u> </u>					
	BORIN					35'		BORING DIAMETER/DEPTH	· A" 35'					
		G DEI	1110	'n				BORING DIANE TENDER IN	.  4 35		١c			
Date/Time	Sample Interval	PID (ppm)	Кессивгу	Stratigraphy	Depth (feet)	Water-tevel		LITHOLOGIC DESCRIPTI n. color. moisture, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, of		Well construction			
			80		0	+	asphalt Clay, orangish brown, som	ne gravel, 1/2" - 3/4" subangular	, stiff, low plasticit	y, no odor, FILL	4			
		-			2									
	<b>_</b>				3	+								
					4		Sandy Clay, bluish gray, fine-grained sands, loose, no odor.							
					5									
					6	+	Clay, dark gray, moist, stiff, moderate plasticity, no odor							
					7									
					8									
	<b></b>				9									
		0.5	100		10									
					11									
					12									
					13		Silty Clay, olive brown, mo	pist to wet, soft, moderate plast	icity, na odor					
					14									
		1.2			15									
					16									
					17		Gravelly Clay, olive brown,	, 1/4" subangular, moist to wet, i	moderate plasticit	y, no odar.				
					18									
					19									
_	1				20									

-

C	C		THE						BORINGAVELL	ID:	
envir		ta)	Sou	IR	CE (	<u>GR</u>	oup, Inc.		5	SB-40	
PROJE	CT NA	MEA	ND ADD	RESS	:	AB&	l Foundry		Project No.	01-ABI-001	
BORIN	G LOC		N (AT SI	TE):					Logged By:	Nathan Collon	
CONTR	OTOAS	RAN	D EQUIP	MEN	T:	WDO	C Geoprobe 7730DT				
SAMPL	ING M	ETHC	)Ð:	_		325	continuous	MONITORING DEVICE:	MiniRae 2000		
START	DATE	M(T) /	E):			7/9/0	8 540	FINISH DATE/ TIME	7/9/08 900		
FIRST	WATE	t (BG	8):	_				STABILIZED WATER LEVEL:			
SURFA	CEEL	EVAT	ION:			<b> </b>		CASING TOP ELEVATION:			
TOTAL	BORIN		PTH(S):			35'	1	BORING DIAMETER/DEPTH:	4" 35'		_
Dale/Time	Variational Sample Interval Sample Interval PJD (ppm) 00 Recovery Stratigraphy					Water-level		LITHOLOGIC DESCRIPTI n, color, moislure, densily, grain CENTAGES ARE APPROXIMA	size/plasticity, of	ther) IE Neil Meil	עלפור לטוואש שלווטיו הפיניים
	100										
	21										
					22		same as above, trace grave	el. 1/2" subancular			
		4			24			stiff, moderate plasticity, no	odor, trace silt		
					25	-	Clay, olive brown, moist,	sliff, moderate plasticity, no	odor		
					26						
					27						
	-				28						
		2.3			29 30						
					31						
					32						
					33		Sand, medlum brown m	edium-grained, wet, loose, p	oody oraded n	o odor	
		2.3			34						
					35 36		Heaving sands encour	itered at 35' bgs			
					36						
					38						
					39						
					40		•				

C	G		<b>HE</b>						BORINGAVELL	ID:					
envir	anmer	itel	Sou	JRC	CE C	<u>i r</u>	OUP, INC.		S	B-41					
PROJE	CT NA	ME AN	D ADD	RESS	<b>3</b> :	A8&	l Foundry		Project No,	01-ABI-001	-				
BORING									Logged By:	Nathan Colte	on				
ONTR	ACTO	R AND	EQUIF	MEN	T:	WDO	C Geoprobe 7730DT	·		•					
SAMPL	ING M	ETHO	):				continuous	MONITORING DEVICE:	MiniRae 2000						
START	DATE	(TIME	);			7/9/0	08 900	FINISH DATE/ TIME	7/9/08 1100						
FIRST	NATER	BOS	):					STABILIZED WATER LEVEL							
SURFA	CE EL	EVATIO	ON:					CASING TOP ELEVATION:							
OTAL	BORI	IG DEF	PTH(S)	);		35'		BORING DIAMETER/DEPTH:	4" 35'						
Date/Time	Sample Interval	PID (ppm)	Recovary	Stratigraphy	Depth (leet)	Water-level	ALL PERCENTAG	LITHOLOGIC DESCRIPTI on, color, moisture, density, grain SES ARE APPROXIMATE UNLE	size/plasticity, ot	her) STATED	Well construction				
					0		asphalt				_				
					1		Gravelly Clay (fill)								
_					3		Clay, dark gray, some (	iy, dark gray, some gravel (fill)							
					4			Recovery							
					5		NO RECOVERY	Recovery							
					0										
					7		Sand, light gray, coarse-g	rained, wai, poorly graded, no oc	lor.						
					8		Clay, black, moist, stiff, m	oderate plasticity, no odor							
					9										
					10		Clay, bluish gray, moist, s -	oft, moderate plasticity, no odor							
					12										
					13										
					14										
					15										
					18										
					18										
~					19		•								
					20		-								

Ĉ	C		THE						BORINGAWELL	ID:	
<b>O</b> nvira		tal	Sou	RC	ee C	R	oup, Inc.		5	SB-41	
PROJE		ME A		RESS	i:	A8&	) Foundry		Project No.	01-ABI-001	
BORING	S LOC	ATIO	N (AT SE	「 <b>E</b> ):					Logged By:	Nathan Colton	
CONTR	ACTO	RAN	DEQUIP	MEN	T:	WDC	Geoprobe 7730DT				
SAMPL	ING M	ETHC	D:			325 (	continuous	MONITORING DEVICE:	MiniRae 2000		
START	DATE	TIM	E):			7 <i>1</i> 970	8 900	FINISH DATE/ TIME	7/9/08 1100		
FIRST	VATER	t (BG	S):					STABILIZED WATER LEVEL:			
SURFA	CE EL	EVAT	ION:					CASING TOP ELEVATION:			
TOTAL	BORIN	IG DE	EPTH(S):			35'	-	BORING DIAMETER/DEPTH:	4" 35		
Daie/Time	Sample Interval	PID (ppm)	Кесочагу	Stratigraphy	Depth (feet)	Water-level		LITHOLOGIC DESCRIPTI n. color, moisture, density, grain CENTAGES ARE APPROXIMAT	size/plasticity, ol	ther) IE	Well construction details
			100		20						
					21						
					22		Silty Clay, olive brown, mol	st, stiff, moderate plasticity, no c	odor, some 1/4° n	ed gravel	
					23						
		0.2			-						
					25 26			stiff, moderate plasticity, no	ODOF		
					20	<u> </u>					
					27						
		2.3			29						
		2.0			30						
					31		-				
					32						
					33		Sand, olive brown, medi	um-grained, wei, loose, poor	ly graded, no o	dor	
			3		34						
					35		Heaving sands encour	itered at 35' bgs			
					36 37						
					37		-				
	-				39						
					40						

S	G		THE Cor	184	<b>-</b>		OUP, INC.		80RING/WELL						
envir	onmer	tel	DUC	JK		JK	UUP, INC.		2	6B-42					
PROJE	CT NA	ME AN		RES	S:	AB&	I Foundry		Project No.	01-ABI-001					
BORIN	G LOC	ATION	(AT SI	TE):					Logged By:	Nathan Collon					
ONTR	ACTO	r and	EQUIP	MEN	Т:	WD	C Geoprobe 7730DT								
BAMPL	ING M	ETHO	2:			325	continuous	MONITORING DEVICE:	MiniRae 2000						
START	DATE		):			7/9/0	08 1442	FINISH DATE ITIME	7/9/08 1645						
FIRST	WATER	R (BGS	):					STABILIZED WATER LEVEL:							
SURFA	CEEL	EVATIO	NC:			· ·		CASING TOP ELEVATION:							
TOTAL	BORIN	IG DE	PTH(S)	:		45'		BORING DIAMETER/DEPTH:	4" 45'						
Date/Time	Date/Time Sample Intervat PID (ppm) Recovery Stratigraphy					Water-levet	(classification ALL PERCENTAGI	LITHOLOGIC DESCRIPTIO n, color, moisture, density, grain ES ARE APPROXIMATE UNLES	size/plasticity, of	her) STATED					
				<u> </u>	0		0' bas to 20' bas see boring	SB-13							
1         0' bgs to 20' bgs see boring SB-13           2         2								, · •							
					3		-								
					4										
					5	<u> </u>									
					6										
_					7										
					8		-								
					9		-								
					11		-								
					12		-								
					13										
					14										
					15		-								
					16		1								
					18		1								
					18 19										

C	<b>C</b>		THE						BORINGWELL	ID:	
envir	onmer	ntel	Sol	IR	GE (	GR	OUP, INC.			SB-42	
PROJE		ME A	ND ADD	RESS	5:	A8&	l Foundry		Project No.	01-ABI-001	
BORIN	G LOC	ATIO	N (AT SI	TE):					Logged By:	Nathan Colton	า
CONTR	ACTO	RAN	D EQUIP	MEN	T:	WDO	C Geoprobe 7730DT				
SAMPL	ING M	ETHC	DD:			325	continuous	MONITORING DEVICE:	MiniRae 2000		
START	DATE	(TIM	E):			7/9/0	08 1442	FINISH DATE/ TIME	7/9/08 1645		
FIRST	WATE	R (BG	<b>S)</b> :					STABILIZED WATER LEVEL			
SURFA	CE EL	EVAT	ION:					CASING TOP ELEVATION:			
TOTAL	BORI		EPTH(S):			45'		BORING DIAMETER/DEPTH:	4" 45'		
Date/Time	Date/Time Sample Interval PID (ppm) 01 Recovery Stratigraphy						(dassificatio ALL PER(	LITHOLOGIC DESCRIPTI n. color, moisture, density, grain CENTAGES ARE APPROXIMAT	size/plasticity, of	ther) IE	Weli construction
			Cons. 1							100	
			100		20		Clay, bluish gray, moist, str	ff, moderate plasticity, no odor		-	T
					21						
		~			<b>2</b> 2		-				
					23		-				
		1.8			24		-				
	-		100		25						
					26						
					27						
					28						
		1.8			29						
			100		30					· · · · · · · · · · · · · · · · · · ·	
					31		Clay, medium brown, mi	pist, stiff, moderate plasticity,	no ador		
					32		-				
					33						
		D			34						
					35						
					36		-				
					37		4				
1618					38 39	ļ	-				
1010											_
					40						

$\mathbf{S}$	G		THE		_		-		BORINGWELL		
envir	onmer	ntal	Sou	JRÓ	CE (	i R(	dup, Inc.			SB-42	
ROJE	CT NA	ME A		RESS	k:	AB&	Foundry		Project No.	01-A81-001	
ORIN	G LOC	ATIO	AT SP	TE):					Logged By:	Nathan Colton	
ONTR	ACTO	RAN		MEN	T:	WDC	Geoprobe 7730DT		5 10	2.0	
AMPL	ING M	ETHC	D:			325 0	continuous	MONITORING DEVICE:	MiniRae 2000	4	
TART	DATE	(TIM	<b>E</b> ]:		-	7/9/0	8 1442	FINISH DATE/ TIME	7/9/08 1645		
RST	WATER	₹ (BG	S):					STABILIZED WATER LEVEL			
JRFA	CE EL	EVAT	ION:					CASING TOP ELEVATION:	12. 		
STAL	BORI	IG DE	PTH(S]:			45'		BORING DIAMETER/DEPTH:	4" 45'		1
Date/Time	Date/Time Sample Interval PID (ppm) Recovery Stratigraphy					Water-level	(dassificatio ALL PERC	LITHOLOGIC DESCRIPTI n, color, moisture, density, grain ENTAGES ARE APPROXIMAT	size/plasticity, or	ther) ER	Mell most riction
					40						
	41										
					42						
					44						
					- 45		Refusal at 45'				
					46						
					47						
					48						
					49						
					50						
					51						
					52 \$3	_					
					54						
					55						
					56						
					57	1					
					58						
					59						
					60	1					

S	G		<b>H</b> E				oup, Inc.		BORINGWELL					
envir	олтел	tal	501	JR	CE	<b>i</b> R	OUP, INC.		5	6B-44				
PROJE	CT NA	ME AN		RES	S:	A88	l Foundry		Project No.	01-ABI-001				
BORIN	G LOC	ATION	AT SI	TE):					Logged By:	Nathan Colt	not			
CONTR	АСТО		EQUIP	MEN	Ť:	WDO	C Geoprobe 7730DT							
SAMPL	JNG M		);			325	continuous	MONITORING DEVICE:	MiniRae 2000					
START	DATE	(TIME	]:			7/10	/08 630	FINISH DATE/ TIME	7/10/2008					
FIRST						1.4		STABILIZED WATER LEVEL:						
SURFA								CASING TOP ELEVATION:						
TOTAL						35'		BORING DIAMETER/DEPTH:	4" 35'		-			
				İ		<u> </u>					Ę			
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feet)	Water-level	(dassification ALL PERCENTAG	LITHOLOGIC DESCRIPTION n, color, moisture, density, grain ES ARE APPROXIMATE UNLES	size/plasticity, ot	her) E STATED	Well construction			
				<b>1</b>	0		Concrete							
					1					5				
					2		No Recovery							
	-	·			3		Silt, black, dry, loose, trace gravel, (concrete?) FILL							
	L	3.5			4									
1305	$\simeq$						Clay, black, wet, stiff, moderate plasticity, strong petroleum odor FILL							
					5		No Recovery							
					6		-							
					0		Clay, black, moist, stiff, mo							
					7			, , , , , , , , , , , , , , , , , , ,						
_					8		- -							
					9									
1315	$\succ$	9			10		same as above, bluish gra	y						
					11		-							
					12									
-					13									
•	~				14									
1320	$\vdash$	25			15			-						
					16		-							
					17		Clay, fight bluich brown m	olsli, very stiff, moderate plastici	v. faint petroleur	nodor				
			·		18				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	<u> </u>				19		1							
1330	$\ge$	2.4					same as above, brown, no	ador						
					20		1							

C	C		THE						BORING/WELL	. 10:	
envir		Mal	Sol	JRO	E	<b>G</b> R(	dup, Inc.			SB-44	
PROJE	CT NA	ME A		RESS	:	AB&	l Foundry		Project No.	01-ABI-001	
BORIN	G LOC	ATIO	N (AT SI	TE):					Logged By:	Nathan Collon	
CONTR	ACTO	R AN		MEN	r:	WD	C Geoprobe 7730DT				
SAMPL	ING M	ETHC	0:			325	continuous	MONITORING DEVICE:	MiniRae 2000		
START	DATE	/ (TIM	E):			7/10	/08 630	FINISH DATE/ TIME	7/10/2008		
FIRST	WATER	₹ (BG	s):					STABILIZED WATER LEVEL	:		
SURFA	CE EL	EVAT						CASING TOP ELEVATION:			
TOTAL	BORIN	IG DE	EPTH(S)	:		35	· · · · · · · · · · · · · · · · · · ·	BORING DIAMETER/DEPTH	4" 35`		
Date/Time	Sample Interval PID (ppm) Recovery Stratigraphy					Water-level		LITHOLOGIC DESCRIPT n, color, maisture, density, grai CENTAGES ARE APPROXIMA	n size/plasticity, o		Well construction
							Gravelly Clay, medium bro	wn, 1/4" subangular, moist, no i	odor		
							Gravelly Sand, dark brown	, wet, loose, medium-grained, 1	/2" subangular, w	ell graded, no odor	1
					22		Gravelly Clay, dark brown,	molst, stiff, low plasticity, no od	or		
							Clay, medium brown, mois	t, stiff, moderate plasticity, no o	dor		
1340	H0 🔀 🛛				24	<u> </u>	•				
	40				25						
					26						
					27						
					28						
					29		Sand, medium to dark brov gravel, 1/2" subangular	wn, wel, medium-grained, loose	, poorly graded, n	o odor, trace	
					30		Heaving sands encounte	red at 30' (10 feet of dual wall	core filled with a	sand)	
					31						
					32						
					33						
	0				34						
					35						
					36	L_					
	L				37						
10:0					38						
1618	$\ge$				39						
					40						1

C	C	1	THE			_			BORINGAVELL	, ID:	
anvir	amno	stal	Sol	JR	CE (	G R	oup, Inc.		S	SB-45	
PROJE	CT NA			RESS	B:	AB&	I Foundry		Project No.	01-ABI-001	
BORIN	G LOC.	ATION	(AT S	(TE):					Logged By:	Nathan Colto	'n
CONTR					T:	WD	C Geoprobe 7730DT			1997 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
SAMPL	ING M	ETHO	):				continuous	MONITORING DEVICE:	MiniRae 2000		
START	DATE	/ (TIME	);				/08 630	FINISH DATE/ TIME	7/10/2008		
FIRST				-				STABILIZED WATER LEVEL:			
SURFA					-	1		CASING TOP ELEVATION:			
TOTAL	BORIN	NG DEI	PTH(S)	):	-	35'		BORING DIAMETER/DEPTH:	4" 35'		
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feel)	Water-level	ALL PERCENTAG	LITHOLOGIC DESCRIPTION, color, moisture, density, grain ES ARE APPROXIMATE UNLE	size/plasticity, or		Well construction
					0	<u> </u>	Concrete				4
					1		Gravelly Clay, very dark g	ray, moist, soft, low plasticity, no	odor (fill)		
					2			ose, petroleum odor k, moist, stiff, low plasticity, pe	atroleum odor, I	race concrete	
					3		pieces				
1305	$\bowtie$	3.5			4 5	ļ					
					6						
					7		Clay, dark bluish gray, mo	ist, stiff, moderate plasticity, no o	dor		
					8						
1315	X	9			9		same as above, some silt	(Silty Clay?)			
					10		_				
					11			ca gravel, moist, stiff, low plasticit			
					12		Clayey Sand, bluish gray,	medium-grained, 1/2" subangula	ar gravel, wet, pei	roleum odor	
	ļ				13				1		
1320	$\ge$	25			14			st, stiff, moderate plasticity, no oc	JOr		
					15	<u> </u>					
					17		-				
					10						
					19		Sandy Clay, bluish gray, fi	ine-grained, loose, poorly graded	, petroleum odor		
1330	$\mid$	2.4			20						

S	C		THE						BORINGAVELL	ID:	
envire	onmer	ntal	Sou	JR	CE	GR	oup, Inc.		5	SB-45	
ROJE	CT NA	ME A	ND ADD	RESS	:	A88	I Foundry		Project No.	01-ABI-001	
	_		N (AT SI						Logged By:	Nathan Colton	
ONTR	ACTO	R AN	d Equip	MEN	Г:		C Geoprobe 7730DT				
_	ing M					325	continuous	MONITORING DEVICE:	MiniRae 2000		
	DATE					7/10	/08 630	FINISH DATE/ TIME	7/10/2008		_
	NATE							STABILIZED WATER LEVEL:			
	CEEL							CASING TOP ELEVATION:			
DTAL	BORI		EPTH(S):	:		35'	1	BORING DIAMETER/DEPTH:	4" 35'		
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feal)	Water-level	(classificatio ALL PER(	LITHOLOGIC DESCRIPT n. color, moisture, density, grain CENTAGES ARE APPROXIMA	size/plasticity, of	lher) IE	Well construction
					20						
					21 22		Gravelly Sand, medium bro gravel	wn, medium-grained, wel, well	graded, no odor,	3/4" subangular	
					23						
340	$\boxtimes$				24						
					25 26						
					27	-					
					28						
					29						
					30		Heaving sands encounte	red at 30' (10 feet of dual wall	core filled with s	sand)	]
					31		-				
					32 33		4				
		0			34	<u> </u>	-				
					35						
					36						
					37						
					38						
1618	$\ge$				39		1				
					40						

2	G		THE				_		BORINGWELL		
envir	onmer	1(2)	501	JR	CE	<b>G</b> R	oup Inc.		5	B-46	
PROJE				RES	S:	AB8	J Foundry		Project No.	01-ABI-001	
BORIN	G LOC	ATION	(AT SI	TE):					Logged By:	Nathan Collo	חל
CONTR	асто	RAND	EQUIF	MEN	T:	WD	C Geoprobe 7730DT			•	
SAMPL	ING M	ETHOD	):				continuous	MONITORING DEVICE:	MiniRae 2000		
START	DATE	(TIME	):			7/10	/08 1200	FINISH DATE/ TIME	7/10/08 1430		
FIRST	WATER	BGS	):					STABILIZED WATER LEVEL:			
SURFA	CEEL		DN:	-				CASING TOP ELEVATION:		15.15	
TOTAL	BORI		TH[S]	:		45'		BORING DIAMETER/DEPTH:	4" 45'		
Date/Time	Sample Interval	PiD (pom)	Recovery	Stratigraphy	C Depth (feet)	Water-level	(dassificatio ALL PERCENTAG	LITHOLOGIC DESCRIPTION n, color, moisture, density, grain ES ARE APPROXIMATE UNLES	size/plasticity, ot	her) STATED	Well construction
					1		Clay, very dark brown, mo (concrete?) FILL	ist, medium stiffness, moderate p	ofasticity, no odol	, trace gravel	1
					3 4 5		No Recovery				
					6 7		- Silty Sand, olive brown, fin	e-grained, wet, loose, well grade	id, no odor		
					8		Clay, very dark grayish bla	ck, stiff, moderate plasticity, spe	cks of brown sill,	no odor	-
			~		10		-				
					12 13	_	same as above, grayish bi	rown. saft, sticky clay			
					14		-				
					15		No Recovery				
					16		Gravelly Clay, medium gra	iyish brown, wel soft 1/4" suban	igular, no odor		
					18		same as above, silff, mols	t, low plasticity, no odor, some st	and, fine-grained		
				$\left  \right $	19		4				
					20						

.

•

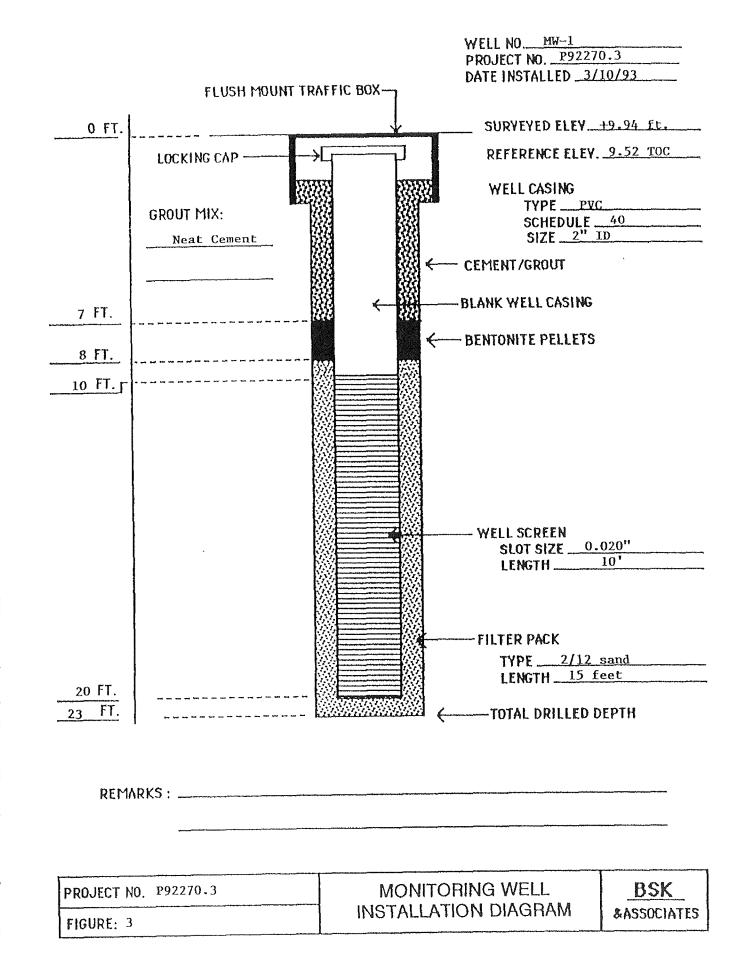
C	C		THE		-	_			BORINGAVELL	. ID:	
enviro		otal	Sol	JR	CE (	<b>B</b> R	oup, Inc.		5	SB-46	
PROJE		ME A	ND ADD	RESS	):	AB&	I Foundry		Project No.	01-A8-001	
BORING	S LOC	ATIO	N (AT SIT	Γ <u>Ε)</u> :					Logged By:	Nathan Colton	
CONTR	ACTO	R AN	D EQUIP	MEN	т:	WDO	C Geoprobe 7730DT				
SAMPL	ING M	ETHC	DD:			325	continuous	MONITORING DEVICE:	MiniRae 2000		
START	DATE	(TIM	E):			7/10/	/08 1200	FINISH DATE/ TIME	7/10/08 1430		
FIRST	VATER	R (BG	<b>S</b> ):					STABILIZED WATER LEVEL:			
SURFA	ĈE EL	EVAT	ION:					CASING TOP ELEVATION:			
TOTAL	BORIN		EPTH(S]:			45'		BORING DIAMETER/DEPTH:	4" 45		
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feet)	Water-level	(classificatio ALL PER(	LITHOLOGIC DESCRIPTI n. color, molsture, density, grain CENTAGES ARE APPROXIMAT	size/plasticity, or	ther)	details
		7			20		Clay, medium brown, sliff, i	moist, moderate plasficity, no oc	or		
					21 22						
					23		same as above, organic m	alter (roots)			
		2			25						
		2			26	<u> </u>					
					27						
					28						
					29						
					30						
		4,4			32						
					33						
					34						
		2			35		same as above, wet, sof Gravely Clay, 1/4"-1/2"	ft, moderate plasticity, no odo	or 		
					37	ļ,					
					38		Sand, fine-grained, wet,no	odor, trace gravel, 1/4"-1/2" sub	angular,		
					39		Clay, dark gray, moist, s	tiff, moderate plasticity, no o	dor		
					40						

$\mathbf{S}$	G		THE		_		-		BORINGAVELL		
envine	onmer	nta)	Sot	IR	CE (	<b>A</b>	oup, Inc.		•	SB-46	
ROJE	CT NA	ME A		RESS	33	AB&	Foundry		Project No.	01-ABI-001	
ORINO	G LOC	ATIO	N (AT SI	TE):	_				Logged By:	Nathan Colfor	n –
ONTR	ACTO	R AN	D EQUIP	MEN	T:	WDO	Geoprobe 7730DT				
AMPL	ING M	етно	D:		_	325	continuous	MONITORING DEVICE:	MiniRae 2000		
TART	DATE	(TIM	E):			7/10/	08 1200	FINISH DATE/ TIME	7/10/08 1430		
RSTV	NATE	۲ (BG	3): 				_	STABILIZED WATER LEVEL:			
URFA	CE EL	EVAT	ION:					CASING TOP ELEVATION:			
TAL	BORIN	G D	EPTH(S):			45`		BORING DIAMETER/DEPTH:	4" 45'		
Date/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (feet)	Water-level	(classificatio ALL PERC	LITHOLOGIC DESCRIPTI n. color, moisture, density, grain ENTAGES ARE APPROXIMAT	ON size/plasticity, o	ther) ER	Mich construction
		<b>0</b> .5			40		Clay, dark brown, very sliff	(lough drilling), moist, moderate	plasticity, no od	or	
					41						
					42						
					43						
					45		Refusal at 45'				_
					46						
					47						
	-				48						
					49						
					50	<b> </b>					
					51						
					52						
					53						
					55						
					56						
					57	-					
					58	÷					
					59	1					
					60	1					

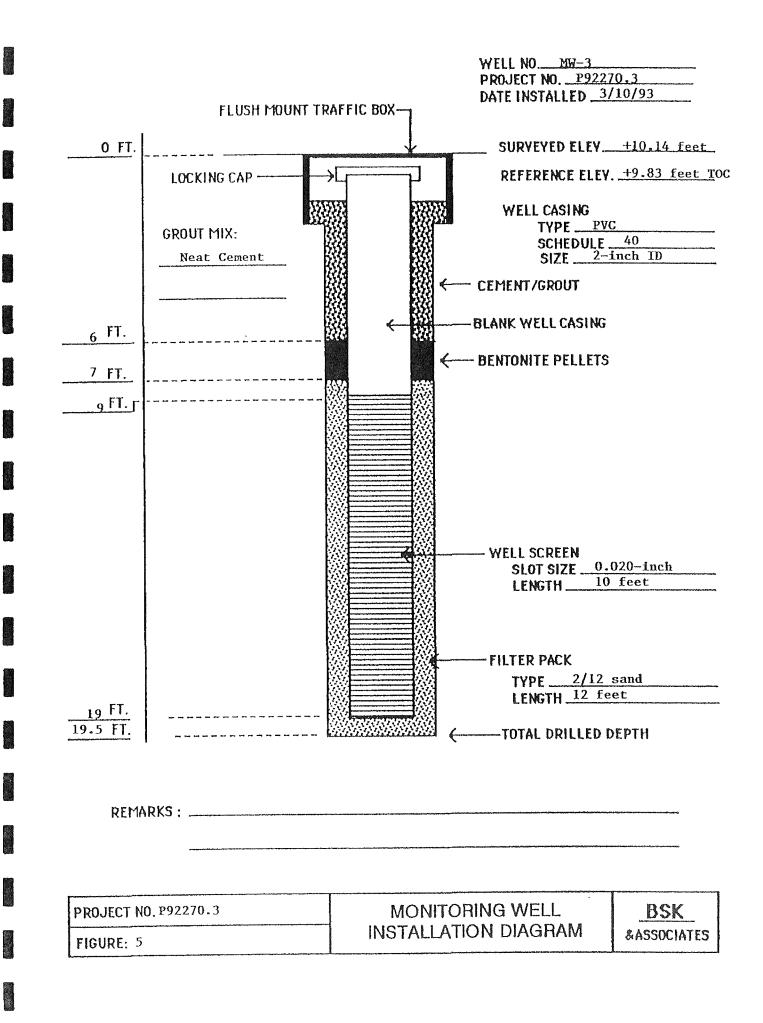
i.

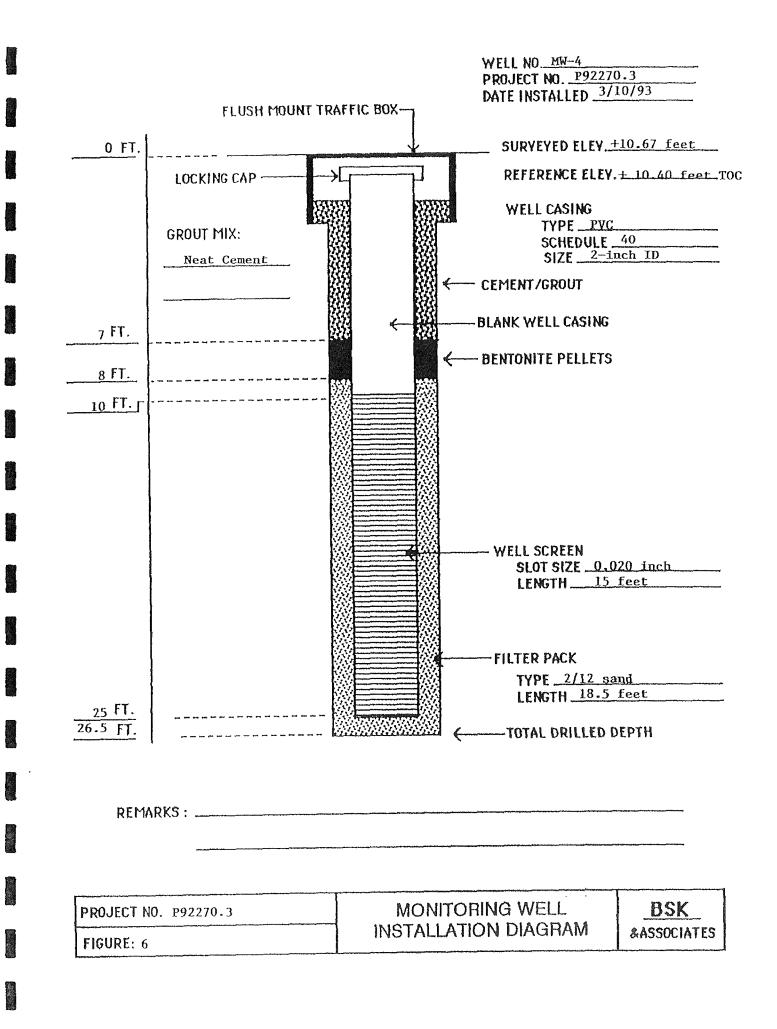
ι

S	G		C ni C ni				OUP, INC.			B-47	
	_										
PROJE					3:	AB&	l Foundry		Project No.	01-A81-001	
BORIN									Logged By:	Nathan Colto	n
CONTR				PMEN	T;		C Geoprobe 7730DT	1	ļ		
SAMPL	^						continuous	MONITORING DEVICE:	MiniRae. 2000		
START						7/11	/08 635	FINISH DATE/ TIME	7/11/08 930		
FIRST			<u> </u>					STABILIZED WATER LEVEL:			
SURFA								CASING TOP ELEVATION:			
TOTAL	BORIN	G DEI	PTH(S)	<u>ר ד</u>		44'	1	BORING DIAMETER/DEPTH:	4" 44'		
Date/Time	Sample Interval	PJD (ppm)	Recovery	Stratigraphy	C Depth (feat)	Water-level		LITHOLOGIC DESCRIPTION 1, color, molsture, density, grain ES ARE APPROXIMATE UNLE:	size/plasticity, oil		Wall mostaiction
			40		1		Gravelly Clay, dark gray, d	ry, stiff, low plasticity, no odor, so	ome sill		
					2						
					3		No Recovery				
		0			<b>*</b> 5		Clay, medium oray, stiff, m	oist, moderate plasticity, no odo	r, trace gravel, 1/	4" subangular	
			100		6					-	
					7		-				
		-			8		same as above, medium b	rown slit			
		2.6			9			y, stiff, moist, low plasticity, no o	dor, 1/4" subangi	Jiar	
			100		10						
					4.4		Clay, medium gray, moist,				
					11		same as above, faint petro	ieum odor, trace gravel			
					12		same as above, no gravel				
		36			14						
713			100		15						
					18		-				
					17		-				
					18		Sandy Clay, medium brow	n, fine-grained, wet, loosa, no oo	lor, trace gravel.	1'4'' round	
715		0.9			19			moderate plasticity, no odor			
					20		1				


			THE			_			BORINGWELL	ID:	
envire	onmer	lal	Sa	IRC	E C	GR	olip, Inc.		5	SB-47	
ROJE	CT NA	ME A		RESS	;	AB8	Foundry		Project No.	01-ABI-001	
ORINC	3 LOC.	ATIO	AT SI	TE):					Logged By:	Nathan Colton	
ONTR	ACTO	RAN	D EQUIP	MENT	r:	WDO	C Geoprobe 7730BT				
AMPLI	ING M	ETHO	D:			325	continuous	MONITORING DEVICE:	Min(Rae 2000		
TART	DATE	(TIM	E):			7/11	/08 635	FINISH DATE/ TIME	7/11/08 930		
IRST V	VATER	R (BG	S):					STABILIZED WATER LEVEL:			
URFA		EVAT	ION:					CASING TOP ELEVATION:			
OTAL	BORIN	ig de	PTH(S)	:		44'		BORING DIAMETER/DEPTH:	4" 44'		
Date/Time	Sample Interval	P(D (ppm)	Recovery	Stratigraphy	Depth (feet)	Water-level		LITHOLOGIC DESCRIPTI n, ∞lor, moisture, density, grain CENTAGES ARE APPROXIMAT	ON size/plasticity, of		Wel) construction
			100		20		Sandy Gravel, medium bro odor	wn, wet, medlum-grained, 1/4" -	1/2" subangular,	well graded, no	4
					21						
					22		1				
					23		]				
		0.4			24		Clayey Gravel, medium	brown, moist to wet, stiff, 1/2	" - 3/4" subang	ular, no odor	
			100		25						
					26						
					27 28		Clay, medium brown, moist	t, stiff, moderate plasticity, no oc	lor		
					29		-				
					30						
		0.3	100		31	-	-				
					32		-				
					33		-				
					34		1				
			100		35						
					36						
					37		ļ				
	-				39						

.


C	C		THE						BORINGAVELL	ID:	
envin		otal	Sou	IRC	CE (	<u>i r</u> i	DUP, INC.		S	SB-47	
PROJE	CT NA	ME A		RESS	3:	AB&	Foundry		Project No.	01-ABI-001	
BORIN	G LOC	ΑΤΙΟΙ	N (AT SI	TE):					Logged By:	Nathan Colton	
CONTR	LACTO	R AN	D EQUIP	MEN	T:	WDO	Geoprobe 7730DT	_			
5AMPL	ING M	ETHO	DD:			325	continuous	MONITORING DEVICE:	MiniRae 2000		
START	DATE	/ (TIM	E):			7/11/	08 635	FINISH DATE/ TIME	7/11/08 930		
FIRST		₹ (BG	s):					STABILIZED WATER LEVEL:			
SURFA	CE EL	EVAT	ION:	_				CASING TOP ELEVATION:			
TOTAL	BORI	IG DE	EPTH(S):			44'		BORING DIAMETER/DEPTH:	4" 44'	<u> </u>	
Dale/Time	Sample Interval	PiD (ppm)	Recovery	Stratigraphy	Depth (feel)	Water-fevel	(ciassificatio ALL PERC	LITHOLOGIC DESCRIPTI n, color, moislure, density, grain ENTAGES ARE APPROXIMAT	size/plasticity, ot	her) ER	Well construction
	<u> </u>		80		40		same as above				
					41						
		¥_4			43						
		1.4			44		Refusal at 44'				
					45						
					46						
					47						
					48						
					49 50						
					51						
					52						
					53	$\left  \right $					
					54						
					55						
-					56						
					57 58					l	
					59						
					60	-					


S	G		rhe Cne		PE <b>f</b>		OUP, INC.		BORINGAVELL	B-48	
						T				-	
		ME AN			\$:	AB8	I Foundry		Project No.	01-ABI-001	
		ATION			~				Logged By:	Nathan Collor	<u>n</u>
				MEN	T:		C Geoprobe 7730DT				
		ETHOE					continuous	MONITORING DEVICE:	MiniRae 2000		
START						7/11/	08 945	FINISH DATE/ TIME	7/11/08 1200	-	
IRST V								STABILIZED WATER LEVEL:			
		EVATIO						CASING TOP ELEVATION:			-
OTAL			21H(S)	;		29.5		BORING DIAMETER/DEPTH:	4" 29.5'		Te
Date/Tme	Sample Interval	PID (ppm)	Кесочегу	Stratigraphy	o Depth (feet)	Water-level		LITHOLOGIC DESCRIPTION, color, moisture, density, grain SES ARE APPROXIMATE UNLES	size/plasticity, ot		Well construction
					1	-	no soil samples collected	0-20 ft bgs. See boring SB-22 fo	r líthölögy.		-
					2						
					3						
					4						
					5						
					7	_					
					8						
					9						
					10						
					11	-					
					12						
					13						
					14						
					15 16						
					18						
					18						
					19						
	<b> </b>				20		1				

C	G		THE						BORINGWELL	ID:	
envir		ntel	Sou	JR	CE (	GR	dup, Inc.		5	SB-48	
ROJE	CT NA	ME A	ND ADD	RESS		A8&	l Foundry		Project No.	01-ABI-001	
BORING	G LOC	ATIO	N (AT SI	TE):					Logged By:	Nathan Colton	
ONTR	АСТО	<u>R AN</u>	d Equip	MEN	T:	WDO	C Geoprobe 7730DT				
SAMPL	ING M	ЕТНС	D:			325 (	continuous	MONITORING DEVICE:	MiniRae 2000		
TART	DATE	(TIM	E):			7/11/	08 945	FINISH DATE/ TIME	7/11/08 1200		
IRST	VATE	R (BG	S):					STABILIZED WATER LEVEL:			
URFA	CE EL	EVAT	ION:					CASING TOP ELEVATION:			
OTAL	BORI	G DE	EPTH(S):	:		29.5	I	BORING DIAMETER/DEPTH:	4" 29.5		
Dale/Time	Sample Interval	PID (ppm)	Recovery	Stratigraphy	Depth (fael)	Water-level		LITHOLOGIC DESCRIPTI n, color, moisture, density, grain CENTAGES ARE APPROXIMA	size/plasticity, ol		Well construction
			100		, 20		Clay, olive brown, moist so	oft, moderate plasticity, no odor			1
	-				21		Sandy Clay, dark gray, moi 1/4" subangular	ist, soft, moderate plasticity, med	dium-grained, no	odor, trace gravel,	'
					22						
					23		Clay, medium brown, mois	t, stiff, moderate plasticity, no oc	101		
		1.3			24						
					25						
					26		Gravelly Clay, grayish bi	rown, wet, 1/4" subangular, r	no odor		
					27		Claver Gravel dark aray w	vet, some sand, coarse-grained			
					28			m brown, stiff, fine-grained, r			
					29		Sand, olive brown, coarse- Refusal at 29.5'	grained, 1/2" subengular, well g	raded, no odor		
					30						
					31						
					32						
					33						
					34						
					35						
					36						
					37						
					38						
					39						
					40						



		FI	ELD DA	ATA			BORING LOG: <u>MW-2R</u>		
DEPTH (Feet bgs)	SAMPLER TYPE/ SAMPLE NO.	SAMPLE INTERVAL	TIME OF COLLECTION	BLOWS/FOOT	PID (ppm)		DATE(S):8/13/06 LOGGED BY: <u>E. Studley</u> WATER LEVEL: <u>9 feet at time of drilling</u> EQUIPMENT: <u>BK-81, 8'' HSA</u>		CONSTRUCTION
DEP.	SAN	SAM	TIME	BLO	PID (	USCS	DESCRIPTION	MELL	CONS
	Drilled with mast down no sampling					CL/CH	4" Concrete		
5 —						SC	Clayey Sand: Dark gray, loose 2/12 Sand 20-4' medium grained sand		
- - 10 —						CL	Sandy Clay: Dark olive gray, wet, very soft Slotted PVC 20-5'		
-									
15 —	ŧ					CL/CH	Clayey Sand: Olive brown, wet, loose, medium grained sand		
-						CL	Sandy Clay: Olive brown, wet, fine grained sand Total Depth Well 20'		
20									<u></u>
						×		a I	
30									
35 –									
B	SK	En En	gineer	rs,Geol nental	ogists, Scienti	sts	PROJECT NAME: <u>A B &amp; I, Oakland, California</u> OJECT NUMBER: <u>E0605504S</u>		





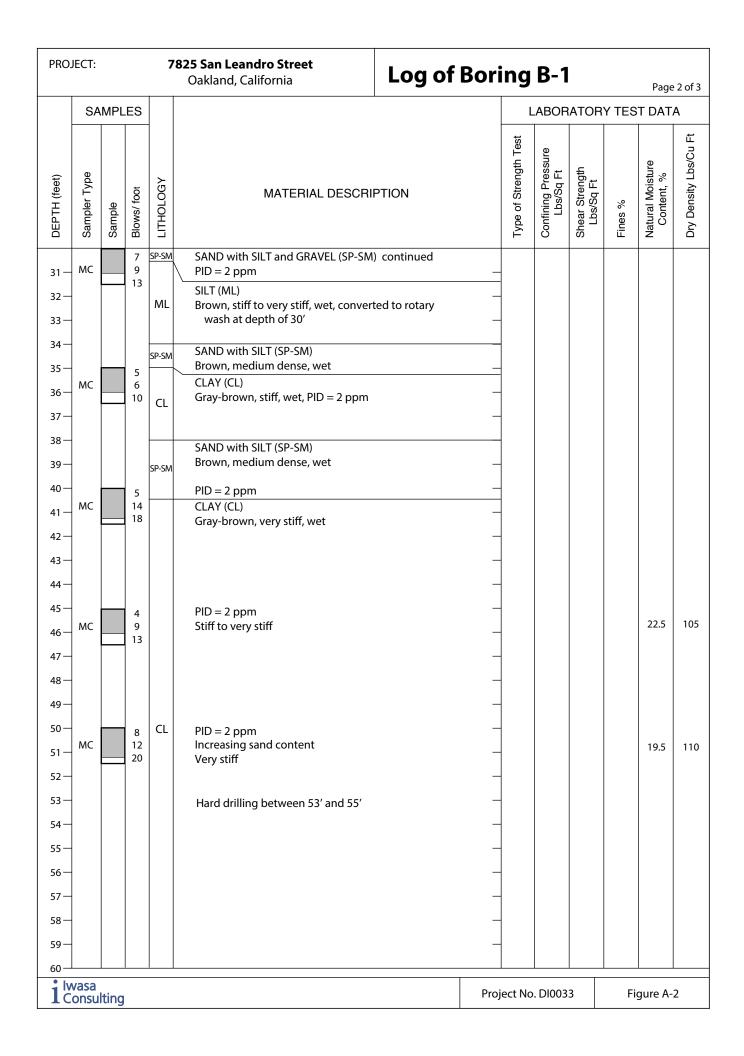
DEPTH (Feet bgs)	SAMPLER TYPE/ SAMPLE NO.	SAMPLE INTERVAL	TIME OF COLLECTION	/FOOT	Ê		BORING LOG: <u>MW-5</u> DATE(S): <u>8/12/06</u> LOGGED BY: <u>E. Studley</u> WATER LEVEL: <u>13 feet at time of drilling</u>	WELL CONSTRUCTION
DEPTH	SAMPL	SAMPL		BLOWS/FOOT	PID (ppm)	USCS	EQUIPMENT: CME-75, 8" HSA	MELL
						Fill	3" Asphalt Concrete Silty Sandy Gravel: Yellow brown, damp, (Fill) 2" PVC 0-5"	
-	CS-1		11:05	32		CL/CH	Sandy Silty Clay: Dark gray, damp to moist, Cement 0-3' fine grained sand Bentonite 3-4'	
5	CS-2		11:08	11		СН	Silty Clay: Dark gray, moist, soft, 2/12 Sand 20-4' trace organics	
1	CS-3		11:12	12			Slotted PVC 20-5'	
10	CS-4		11:15	11			Silty Clay: Brown mottled oilve gray, moist, soft	
15	CS-5		11:18	4		CL/CH	Silty Sandy Clay: Olive brown, wet, soft medium grained sand	
20							grades mottled olive brown/gray Total Depth Well 20'	
-	CS-6		11:24	21		SC	Clayey Silty Sand: Gray brown, medium grained sand	
25								
30								
35								
	۰. 					<u>.</u>		
R	SK	En	gineer	s,Geol	ogists, Scienti	PR	PROJECT NAME: <u>A B &amp; I, Oakland, California</u> DJECT NUMBER: <u>E0605504S</u>	

		Fl	ELD DA	ATA			BORING LOG: MW-6	
DEPTH (Feet bgs)	SAMPLER TYPE/ SAMPLE NO.	SAMPLE INTERVAL	TIME OF COLLECTION	BLOWS/FOOT	PID (ppm)		DATE(S): <u>8/12/06</u> LOGGED BY: <u>M. Cline</u> WATER LEVEL: <u>13 feet at time of drilling</u> EQUIPMENT: <u>CME-75, 8'' HSA</u>	WELL
ä	<i>ເ</i> ນ <i>ເ</i> ນ	SP	ĘΫ	B	d.	uscs Fill	DESCRIPTION 3" Asphalt Concrete	28
-							Silty Sandy Gravel: Brown, damp, (Fill) 2" PVC 0-5"	
_	CS-1		9:10	10		CL/CH Fill	Sandy Silty Clay: Dark gray brown, moist, trace gravel, wood, brick (Fill) Bentonite 3-4'	
5	CS-2		9:15	12		СН	Silty Clay: Dark gray, moist, soft, 2/12 Sand 20-4' trace organics	
-	. CS-3		9:18	14			Slotted PVC 20-5' grades dark gray to olive gray, very moist	
10	CS-4		9:21	15		- - 	Silty Clay: Brown mottled oilve gray, very moist to wet in pores, some carbonates	
15	CS-5		9:25	10	c	CL/SC	Silty Clay/Clayey Sand: Brown to light olive brown, wet	
20 —	CS-6		9:38	6		CL/CH	Total Depth Well 20' Silty Clay: Brown to light olive brown, wet	
-								
25								
30							· · · · · ·	
35 —								
B	SK	En En	ngineer	rs,Geol nental	ogists, Scienti	sts	PROJECT NAME: A B & I, Oakland, California OJECT NUMBER: E0605504S	

		FI	ELD DA	<b>ATA</b>			BORING LOG: MW-7	
DEPTH (Feet bgs)	SAMPLER TYPE/ SAMPLE NO.	SAMPLE INTERVAL	TIME OF COLLECTION	BLOWS/FOOT	PID (ppm)		DATE(S): <u>8/12/06</u> LOGGED BY: <u>E. Studley</u> WATER LEVEL: <u>13 feet at time of drilling</u> EQUIPMENT: <u>CME-75, 8'' HSA</u>	WELL CONSTRUCTION
DEF	SA	SAN	COL	BL(	DIA	USCS	DESCRIPTION	CON
_						Fill	4" Concrete Silty Sandy Gravel: Yellow brown, damp, (Fill) 2" PVC 0-5"	
-	CS-1		15:26	29		CL/CH Fill	Silty Clay: Dark gray, damp, gravels to 1.5" Cement 0-3' glass, slag, concrete (Fill) Bentonite 3-4'	
5 —	NR		15:30	18			2/12 Sand 20-4'	
-	CS-2		15:34	11		СН	Silty Clay: Dark gray, wet, strong hydrocarbon odor	
10	CS-3		15:45	4			grades to dark gay mottled light gray wet, slight odor, roots/wood fragments	
	CS-4		15:50	7		CL/CH	Sandy Silty Clay: Olive brown/gray, wet, soft, medium grained sand, faint odor	
20 —	CS-5	RIMA	16:01	9			grades to olive gray Total Depth Well 20'	
-								
30								
35 _								
B	SK	En En	gineer	rs,Geol mental	ogists, Scienti	sts	PROJECT NAME: <u>A B &amp; I, Oakland, California</u> OJECT NUMBER: <u>E0605504S</u>	

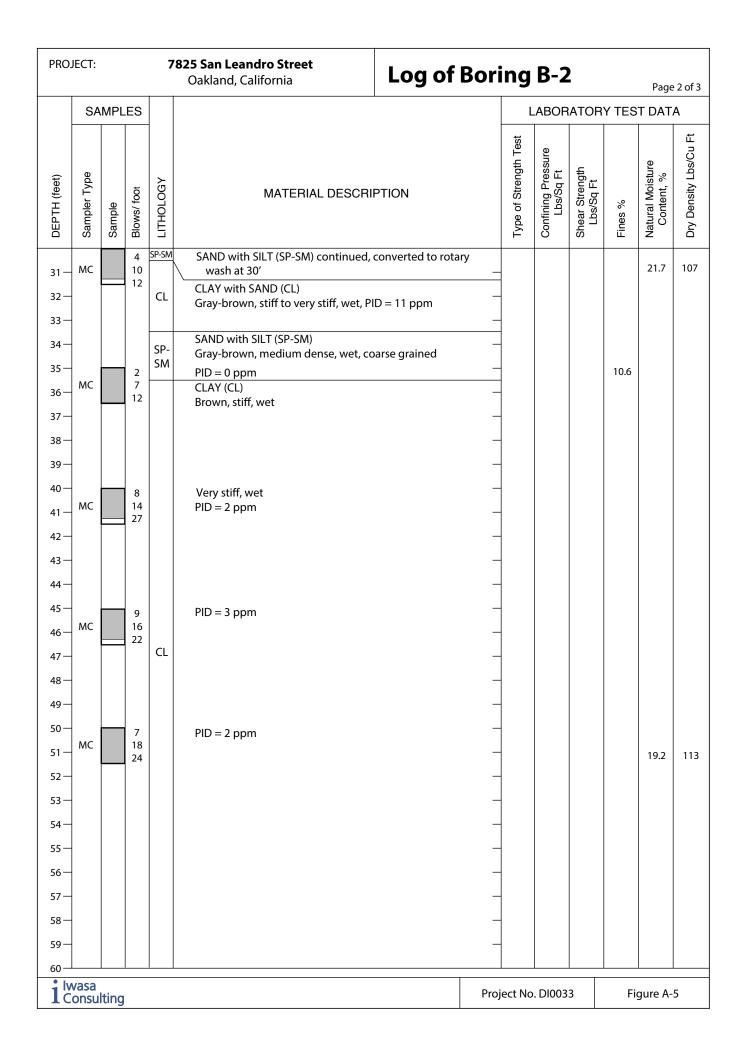
		FI	ELD DA	TA			BORING LOG: MW-8	
DEPTH (Feet bgs)	SAMPLER TYPE/ SAMPLE NO.	SAMPLE INTERVAL	TIME OF COLLECTION	BLOWS/FOOT	PID (ppm)		DATE(S): <u>8/12/06</u> LOGGED BY: <u>E. Studley</u> WATER LEVEL: <u>13 feet at time of drilling</u> EQUIPMENT: <u>CME-75, 8" HSA</u>	WELL CONSTRUCTION
DEP	SAN	SAM	TIME	BLO	DID	USCS	DESCRIPTION	MELL
						Fill	3" Asphalt Concrete Silty Sandy Gravel: Yellow brown, moist, (Fill) 2" PVC 0-5"	
	CS-1		13:00	20		CL/CH Fill	Silty Clay: Dark olive brown, damp, gravels, Cement 0-3' wire, debris (Fill) Bentonite 3-4'	
5 -	CS-2		13:02	6		CL/CH	Silty Clay: Dark olive brown, moist to wet 2/12 Sand 20-4' medium grained sand lenses	
-	CS-3		13:08	12			Slotted PVC 20-5'	
10	NR			13		СН	grades to olive brown mottled gray	
- 15	CS-4		13:29	5		CL/CH	Silty Sandy Clay: Olive brown, wet, soft, medium grained sand	
20	CS-5		13:36	15			trace carbonates Total Depth Well 20'	
	03-0		13.30	15				•
25								
30 -								
35								
R	SK	En	gineer	s,Geol	ogists, Scienti	PR	PROJECT NAME: A B & I, Oakland, California OJECT NUMBER: E0605504S	

		FI	ELD DA	ATA			BORING LOG: MW-9		
DEPTH (Feet bgs)	SAMPLER TYPE/ SAMPLE NO.	SAMPLE INTERVAL	TIME OF COLLECTION	BLOWS/FOOT	PID (ppm)		DATE(S): <u>8/18/06</u> LOGGED BY: <u>J. Yeazell</u> WATER LEVEL: <u>8 feet at time of drilling</u> EQUIPMENT: <u>Marl Limited Access</u> , 8" HSA		CONSTRUCTION
DEP	SAN	SAM	TIME	BLO	DIA	USCS	DESCRIPTION	VANCI	CON
_						Fill	6" Concrete		
_	DP-1		10:57				Silty Clay: Dark gray, some concrete debris 2" PVC 0-5" Cement 0-3'		
-	51 1		10101			СН	Silty Clay: Dark gray, hydrocarbon odor Bentonite 3-4'		24751
5 -	DP-2		11:03						
-	DF-2		11.05				2/12 Sand 20-4'		
-			44.40			СН	Silty Clay: Olive brown/brown, no odor Slotted PVC 20-5'		
	DP-3		11:10			OIT			
10	DP-4	H	11:29				grades wet, slight odor		
-									
15 -									
	DP-5		11:36				some fine sand, odor		
-					×				
-									
20 —	DP-6		11:40				Total Depth Well 20'		
-									
-									
-									
25 -									
-									
-									
30 -									
-									
-									
35 —			]						
							PROJECT NAME: A B & I, Oakland, California		
R	SK	En	gineer	s,Geol	ogists,	PR	OJECT NUMBER: E0605504S		
D		En	vironn	nental	Scienti	sts			


H/	ALEY DRK	8z					TEST	<b>F BORING</b>	RE	PORT		1100(I)( <del>4</del> 4)		1	÷	Γ	_	]	<u> </u>	NG S			
AL PROJI		The Fou	ndre: O	akland							ዘዴል	FILE NO.			020-	_	Pag -10		1	—	of	L	-
LOCA.				dro Street	r							JECT MGR.		-	C.E		-104						
CLIEN		Duke Re		no Succi								D REP.				ayer	ιeγ						
	RACTOR	_										E STARTED		-	3	12	5/1	ລີ					
DRILL		Gregg I	Drilling	3							DAT	E FINISHED			3	21	57	2.0	)				
Elevati	on	-	Datun				ng Locat					_	_									_	
ltem		Casing	Samp	ler Co	ore Barre			Make & Model		Cat-Head	_	mmer Type	-	Drilli	_	Mud tonit	_			ing A Meth			
Type Ineide	Diameter						Truck 🖸	Tripod Geoprobe		Winch		Safety Doughnut				mer		Ξy		ABUI C		Jehr	-
	er Weight						rack 🗆	Air Track		Roller Bit		Automatic			Non			9	$\mathcal{I}$	5	N		
Hamm	er Fall (in						Skid 🗖			Cutting Head	Drilli	ng Notes: ସିଧ	5" H					2.25	1			_	コ
	Comolo			sv	Well	Stratum	uscs				Decenin			Gra	vel		Saňo	Н		F	ield	Tes	4
Depth (ft.)	Sample Recover	Sample No.	PID (ppb)	Probe Diagra	Diagra	Change		(density/consistency,	color, C	Jal Identification & I SROUP NAME & SYMB b, optional descriptions,	3OL, mai	dimum particle s	ize*,	% Coarse	e.	% Coarse	% Medium	e	nes	Dilatancy	Toughness	Plasticity	gth
	У			m	m	(ft.)	· ·	Structure, odor, i	noisiun	s, optional descriptions,	, yeologik	, niterbreation)		Ŭ %	% Fine	Ö%	% W	% Fine	% Fines	Dilat	Diol	Plas	Strength
-0-						_		Apphalt/Conc	inete	/						-							
- V -			087			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	FIL			no.	11-064	A	15	ic		uo	30	2				
	_1_		267	$\leq$		0,5	SM	Yellowiegov	Owt	109/6010,71	5.01	Tty Sare	x	10	0	-	72	2	94			27	
	thefer		232	14				Color bane	101	CS/ELOYT	3/2.10	YR)										Ξ	
2	Arg Arg			11			SP	gray Celi	104	nietno odla	Pou	ly sydde	d.	10	6			80	5				
3	-9-		833	11		3.5	SP SE	Sovie Marcin	210m	oist no ocla	Totre	cebrickfig	stent	10	5	1	55	<b>2</b> 05	10	2	L M	M	5
	- Marine	-	-	XI			L CL	Both brand	2/210	MB, Grevelly le cool/briching C3/15 Gley U lea le brich/wood f M, Gley U, Le	couch-	or whereast +	loid	Ш	10		1		12.0	1 1			I I
Ч			230			4	CL	Noodor, the	ie w	ood/brich free	ment	S		1 - 1				10	90	S	17	67	17
-5-				T		-		Q3, Verydala	Grey	C3/13 Gley Ulgo	riday	Warrebr	bist										
J		-	22.7	Theo				Slight oclor	tra	e brick/wood t	weste	MIS MO	4	=	=	-							
G		F-2	275	- Maria				NO DOOP	d.51	M, 0102 1, 12	CON	14300	J.	-		-	1-		-	-			
~		E-2 -5-6	1000	11		-		100 0000														$\equiv$	
7.	$\leq$			11										-		-					_		
8		-	\$37	1			-							-			-	-	-				
- G			4B.07	17			-													E	$\equiv$		
Y Y			160	1											_								
-10-		- 7	-	/		1									-		1=1				-	-	
		E-2 5-11	anc	/										=	-		=		-		-	-	
4.		1011	411	1/	1 H-															E			
Via				11	H										_								
			402	V/	1 + 4										Ł	-	-		-			-	
13	1-1-		283												-	-					-		-
14				1/			-									1							
		E-2-1	1406		17						V.,					-							
H5-				1/					1000	Hall CV and	.0.0	<u> </u>				E	F	1	-	E			
Ĭ								1014	ber	th 15, SV prot	200	0				1		-				77	
																					E		
																F		-			1		1
																	1						-
1																					E		
																		1					
																			-	-	-	-	-
F -	1	-	-		-														-	1	1		
1																							1
																	1						
1	-	-	1	_														1	-	1	1	1	-
⊢	<u> </u>	Wat	ter Lev	el Data		1	+	Sample ID		Well Diagram	1				Ş	umr	nary	/	_	_	<u> </u>	_	
			1	Depti	h in feet	to:		**************************************		Riser Pipe			30.5										
Dat	e Time	Elaps d Tim		Botto	1		0	Open End Rod		Screen		Overburden (											_
	-	(hr.)		m of Hole		Water	ΤU	Thin Wall Tube Undisturbed Samp		Filter Sand		Rock Cored ( Number of Sa											-
$\vdash$	1330		- C==			11,75	- s	Split Spoon Samp		Grout		runner or St	ampse	3		_							-
			1				G	Geoprobe		Concrete		BORING NO		_									
										Bentonite Se						_						_	
Fie	ld Tests					w N-N um H-H		Plasticity: Dry Strength	N -	N - Nonplastic None L - Low M						iah							
$\vdash$		rougi	ongs L 1	*NO	TE: Maxi	imum Par	ticle Size			observation within						3.1			_			_	
			N							f the USCS system						Inc						_	

H	ALEY LDRIC	82 14					TES	<b>T BORING</b>	REPC	DRT						Page	_	η INC	_
PROJ LOCA CLIEN	ECT TION	The Four 7825 Sar Duke Re	1 Leand		Ang		a.			Ĕ	H&A FILE PROJEC FIELD RE	T MGR. P.		C.E A.C	)4627 Ellis Caver	7-100 ney		-	0
CONT	RACTOR	GPRS Gregg D	rillia								DATE ST		1	_	3/2	5	22		
Elevat			Datum		100	Bori	ng Local	lion			VALET	IGHED			210	~1.	3		
ltem Type	-	Casing	Sampl	ler Co	ore Barre		Rig Truck 🗆	Make & Model	Cat-	Head	Hamme Sa	r Type lifely	Dril	_	Mud	_		sing e Mei	
Inside	Diameter						NTV 10	Geoprobe	U Wine	ch.		oughnut		Pol	ymei			db	ų
	ier Weight ier Fall (in					and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	Frack 🗖 Skid 🗖		-	er Bit ing Head	Drilling N	tomatic		No	_	35	0	1OF M	1
				sv	-well						1	1		ravel	-	Sand	Ť	_	Fi
Depth (ft.)	Sample Recover y	Sample No.	PID (ppb)	Probe Diegra	Diagra	Stratum Change (ft.)	USCS Symbo I	(density/consistency, c structure, odor, m	olor, GROUP oisture, optior		DL, maximum		% Coarse	% Fine	% Coarse	% Medium	% Fine % Fine	Dilatancy	
-0- 1	Had		221		X		SM	Velowidhisto Noisto slisht od @ 1' color cho	wre (2/6) br, thee rise to a	brick from	Equal w/q conto/gla C3/3, 102	in stand	1110	5		40	50 1	5	
2 3		E-4 53	12.99	7		-		63' strong rd	nderm	ader-									
4			M. A.	1.1.1.1		5	CL	Black (2.5/1 Moist, petroleu	1.610-1	Tecnelo	y.withou	red	-			5	108	39 8	3
6			950 GS1		11			Moist retroler	Hoder										
8			454.		1								15	1					
-10- 11			34.14 13.14	pn	1			@11' Calora	hatige	o lista di	relsours (1	6/4 as	Y)			· · · · · · · · · · · · · · · · · · ·			
B		E-4 -5-13	DH C	1.	A			CIZ' C!' lere	c & B	602 (3.5/	16600		~						Product Party
14 -15-	X		1.000	9-980		Ĩ				1 probe @					- k				
2									0				1						
					-														
	-	Wate	er Leve	el Data		1		Sample ID		Well Diagram					Sumr	nary		1	
Dat	te Time	Elapse	000			to: Water	O T U S G	Open End Rod Thin Wall Tube Undisturbed Sample Split Spoon Sample Geoprobe		Riser Pipe Screen Filter Sand Cuttings Grout Concrete Bentonite Sea	Rock Num BOF	burden (L Cored (L ber of Sa	inear ft		_				
Fie	eld Tests					w N-N		Plasticity	N	Nonplastic	L-Low N					-		3	
		Tough	nes L -	Low N	1 - Mediu	um H-H	ligh	Dry Strength: e is determined by di	N - None	L-Low M-	Medium	H - High	V - Ve	ery F	ligh				_

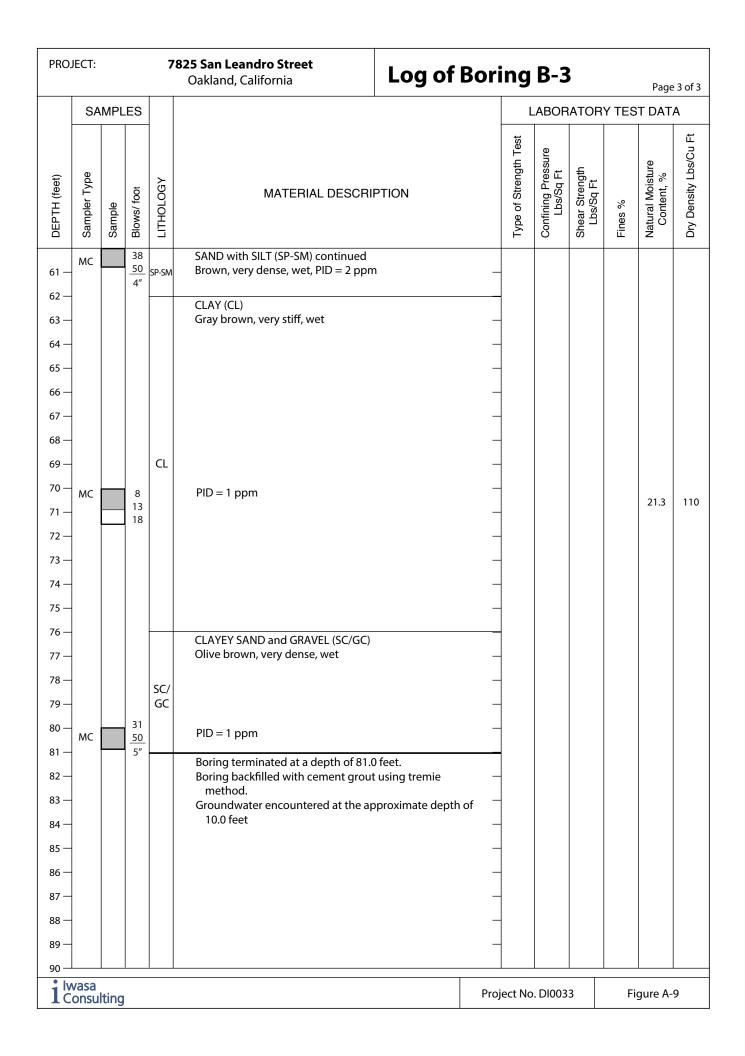
	ALEY DRK	8				-	TES	<b>F BORING</b>	REP	ORT						Pag		1	5	of
PROJE		The Four	ndry Oa	ıkland							H&A	FILE NO.		02	0462	7-100		_		
LOCAT	TION	7825 Sai	n Leand	Iro Street							PRO	JECT MGR.			Ellis					
CLIEN	Т	Duke Re	alty								FIELC	D REP.			Cave					
	RACTOR											STARTED			36	25/	32			-0.
DRILL		Gregg [				0!					DATE	FINISHED		č	3/6	257	∂~	L		
levatio tem	on	Casing	Datum		ore Barre		ng Locat Rio	Make & Model			Har	nmer Type	Dri	illing	Mud	1	С	asin	a Ac	ivar
Гуре		Guoing	-				ruck 🔲		Li Ca	t-Head		Safety			ntoni			pe M		
	Diameter	11						Geoprobe		nch		Doughnut			lyme	r [	H.	nol	? A	
	er Weight er Fall (in		ļ				'rack 🗀 Skid 🗆	Air Track		ller Bit tting Head	Drittir	Automatic Ig Notes:	25"		ne			rig tr	~ 10	72
	er Fan (In									ting rieau	Ditain	ig notes.		rave		Sand		Т	Fie	ld 1
Depth (ft.)	Sample Recover y	Sample No.		SV Probe Diagra m	Well Diagra m	Stratum Change (ft.)		(density/consistency,	color, GROL	entification & P NAME & SYME onal descriptions,	BOL, maxi	imum particle si	ze*, es	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	1 ougnness
-0-								Approx 5 in Fill/Accorso Very John on With growel	CONCRE	c			*	* *	*	*	%	* .		-
	- (-	E-5-5	112	$\sum_{i=1}^{n}$	1	0,5	GM	FIL/Accores	ste ba	AC VR C		Grand		5 9	-	35	25	E.	ch	EI
1	35	Ŭ	52		$\backslash$		0.1	withgravel	moiet	NODUCK	ંક્રમાં	00100		1		<u> </u>		1	<u> </u>	
2	Hend		61							,	0			-	-		-		-1-	-1
5	1	F-5-6-3	<u><u></u></u>	-/	$ \rangle$												$\equiv$			
3								Total	dept	3', bori	NS-SH	owlode 1	OHO		1					
닉							-		-1.1	- 0 -	~ 0	-	_		-					-
			_				-						-		1					
-5-																tΞl				
													-	-	-	-			-	
													-		-				Ξł	
			-												1					-
			-																	÷
																			=1	
			-	_		1							_		1				_	
		-			-	-	-							1						
																1.				
		_		_		-							_		ļ_				-	-
			-			-	-													
		_					-						_		-		_		-1	-
			_										-							
$\vdash$ –																				
																	-			
																		-	-	
			-				-													
					_															
													-				-			-
				-	-													-		-
L																	1			
																				_
							-										-	-	-	-
<u> </u>		144 -						Damala 10		MAD DI					Reserve			1		
<u> </u>	1		er Leve		n in feet	to:		Sample ID		Well Diagram Riser Pipe	<u></u>				sum	mary				
Data	. Time	Elapse		Botto			0	Open End Rod				Overburden (L	inear fi	.)						
Date	-   10me	d Time (hr.)	e om of	m of		Water	Т	Thin Wall Tube				Rock Cored (L		t.)	_		-			
		+	Cani	Hole	-	-	U S	Undisturbed Samp Split Spoon Samp		Cuttings Grout	ľ	Number of Sa	mples							
		-			+	+	ĬĞ	Geoprobe			ե	BORING NO.					_			_
						1	_	eleoprope												
E:_*	d Testa	Oilete		Desid	0.01-		1	-		Bentonite Se	eal		m U 1	Line						
Fiel	d Tests					w N-Na im H-H	one	Plasticity:			eal L - Lov	v M - Mediu					_			


PROJ		The Four	dry Oa	kland	12	57 J. M.	1000	Section and Color		H&A FILE NO.	1000	0204	<b>P</b> 4627-1		9	5
LOCA		7825 San			525	112	1	的现在分词		PROJECT MGR.		C.E	_	1		81
CLIEN		Duke Rea	alty		2 = 12	6 M (	1.1	- Development of	<u>(1997)</u> (1997) (1997) (1997)	FIELD REP.		A.C	avene	-1	~~	-
	RACTOR	GPRS Gregg D			1.1	10 80 K	1.6			DATE STARTED		-	30	FI	d'a	*
Elevat			Datum			Bori	ng Locat	lion		BATETINIONED	3.559	-ip.	010	G	~	-90
Item	SAME .	Casing	_	_	re Barr			Make & Model	and the second second second second second second second second second second second second second second second	Hammer Type		iling I			Cas	
Type	Diameter		ri ken		98 S		Truck 🗆 ATV 🗆		Cat-Head Winch	Safety     Doughnut			tonite /mer	-	ype	_
CONTRACTOR OF THE OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNE	er Weight			0.000	in angle pr	100 C	Track 🗆		Roller Bit	Automatic		Non		th	ad	the
Hamm	er Fall (in.	1202	1.22.6	Morene	Sec. Sec.		Skid 🗆	1. 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	Cutting Head	Drilling Notes: 3,			2.25		Der	
Depth (ft.)	Sample Recover y	Sample No.		SV Probe Diagra	Well Diagra m	Stratum Change (ft.)		(density/consistency, co	Anual Identification & I lor, GROUP NAME & SYMB isture, optional descriptions,	OL, maximum particle siz		% Fine	% Coarse	% Fine	ines	Dilatancy
24.5	(t) / t)	1996	3203	m			1520	10. 10 C	一时 10.48年7月11	A CONTRACT	%	8	%	8	%	Dila
-0-		111			111			Rocks/fill			-		-	-	1	
- 1		and the s	16				13272		en alterne and a	Constant and the second second			_			-
		F-C	42.97			100	1			-				-	-	
2		E-6	11004	0		2	CL	Black CZE/H,	sleyd, lean Cla	rumoist.		1 - 5	10	ъ	85	S
3	00	191 A.	200,00	0		20.34	1000	No odor	No. of the second second		1					
4	4 CO	1. 200 4	- 1.			1.92	01	C. ITTE	Lon Colo	TAC	-	+		55	bC.	S
Г	Ť	E-G				4	10L	frace averel	ley Dy Scridy (	100 (10,51)		T	u		p	
23-		E-6	165	1				1997 AL 1997 AL 1997	A CONTRACTOR OF THE OWNER				-	1	-	1
G	-+-	101	153		E	6	CL	Block (a.5/H.E	bley Du Leoni Cla	r, moit, dist	F		10	5	85	6
\$7		1015	142		H	- <u> </u>	28 A.R.	odor		<i>.</i> , <i>.</i> , <i>.</i> , <i>.</i> , <i>.</i> , <i>.</i> , <i>.</i> , <i>.</i> ,	31			-	12	1
18	100	0.000 C. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.14	1	H	3.444				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	18				100	
-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	100	16-51	133	1	H		1-1215			and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	-			-	-	
9	-	E-G -W	157	120	H										1	
-10-	12	-W	-	ų.					et dept 10'		-	-		-		
	10.00								ci liefe () 10							
128	1	1210		2016			1.1		1000 1000 1000 1000 1000 1000 1000 100		Netic (0) 1.53 / 54	1		1	-	
			20	and a	Self C	1	5 25 1								1	
1.44		12.5		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1000									-	100	
12.5	1.2846	12.23	2.8	12689	053564	2.34		10.2910 1000	et a transfer a strange			12				
1.20	-		18.85		1.3.24									3		
	36,291.05	100	128	1.1.1.1	1. A.	1. 141 () 1. 141 () 1. 141 ()	Same			14-14-14-14-14-14-14-14-14-14-14-14-14-1		12			-	
		1.00	10.00	100 A	A State											
				32.0	199.24							1.5				
	1.1.2		1		1.31.2	the state								-		12
22		1.00	1	25				Contraction of the second						1	-	
1.40	1000		12.82			1200		Constant State	NATES OF STREET, STREET,	Contraction of the	1					1
	0.2	1000	2.5	FALLON FALLON											1072	-
A SUST		1097	100	1436.0	1.5	10.00	14.49	12.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.								
-	11.00		2442	200	1000	2 1000	A 24389 8 (\$4929	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100						2.	-	1
1.2	A STATE	13.456	1.20	1.118	640	1000		Semple 10	Well Diser			_		6.		
100	1.10	H.	5 42	Data Depth	in feet	to:		Sample ID	Well Diagram			SI	umma	ry		÷.
Dat	e Time	Elapse d Time (hr.)		Botto m of Hole		Water	U	Open End Rod Thin Wall Tube Undisturbed Sample	Image: Contract of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco	Overburden (Lin Rock Cored (Lin Number of Sam	near ft.		X			
3/25/	1615	220		14	100	7.75	S G	Split Spoon Sample Geoprobe	Grout	BORING NO.	4.11	10		24	100	
15.9	126	1.1						New Address	Bentonite Sea	Par - Andrew Bar	22	1			1	
Fie	Id Tests	Dilatan	cy: R	Rapid	S - Slo	w N-N um H-H	lone	Plasticity:	N - Nonplastic N - None L - Low M -	L - Low M - Mediun	H-H	ligh			120	

PROJ	ECT:			7	825 San Leandro StreetOakland, California	og of Bori	ing	B-1			Page	e 1 of 3
Borir	ng loc	ation	n: S	See Si	te Plan, Figure 2		Logo	ed by:	D. Iwa	isa		
Date	starte	ed:	8	3/10/2	Date finished: 8/10/22							
	-				v stem auger and rotary wash							
		-		-	40 lbs. / 30 inches Hammer type: Safety			LABC	ORATOR	Y TEST I	DATA	
Sam					fornia (MC) , Standard Penetration Test (SPT)				jth		ture %	
DEPTH (feet)	Sampler Type	Sample Sample	Blows/ foot	LITHOLOGY	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	e	Natural Moisture Content, %	Dry Density
<u> </u>	Sar T	Sar	Blo fo		Approx. Ground Surface Elevation: 11.5 fo	eet, NAVD88	Ľ Ť	Co Lb	sh	Fines %	Na	5
1—					5.5" thick concrete with wire mesh SILTY SAND and GRAVEL (SM/GM)							
				SM/ GM	Red brown, dense, moist [FILL]							
2—			2									
3—	МС		4	СН	CLAY (CH) Black, medium stiff, moist, PID = 2 ppm	-	TxUU	240	1420		34.1	87
4—			6		Corrosion test (see Appendix B)	_	-					
5 —					Unconsolidated undrained triaxial compres	sion test						
					(see Appendix B)							
6—					CLAY (CL)							
7—					Green-gray brown, medium stiff, moist							
8—					Resistan R-value = 7 (see	ce value test  — Appendix B)	-					
9_												
10 -												
10-	МС		2 3		PID = 2 ppm						26.4	96
11 —	MC		5		Atterberg limits test, PI=28, LL=45 (See App	Dendix B)						
12 —				CL		_						
13 —					👱 8/10/22, 9:00am (unstabilized)	_						
14—						_						
15 —	МС		2		Medium stiff to stiff, wet, PID = 2 ppm	_					24.6	10
16 —	wic		8			—						
17 —						_						
18—						_						
19—						_						
20 —												
	МС		3 8		PID = 2ppm						21.3	10
21 —	NC		8 16		CLAY with SAND (CL)							
22 —				CL	Gray-brown, very stiff, wet, fine grained sar	id						
23 —						_						
24—					SAND with SILT and GRAVEL (SP-SM)							
					Gray-brown, dense, wet, coarse grained							
25 —	MC		6		PID = 2 ppm	_	1			10.1		
26 —	MC		17 30									
27 —				SP- SM		_						
28—						_						
29—												
					Some flowing sands							
30	(8.5.5		1	1			1			1	I	I
1 1	/asa	lting				Proj	ect No	. DI003	3	Fi	gure A-	1



PRO.	JECT:			78	<b>325 San Leandro Street</b> Oakland, California	Log of B	Bori	ing	B-1			Page	e 3 of 3
	SA	MPL	ES					L	ABOR	ATOR	Y TES	T DAT	A
DEPTH (feet)	Sampler Type	Sample	Blows/ foot	ГІТНОГОĞY	MATERIAL DESCRIPT	ΓΙΟΝ		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
61 — 62 — 63 — 64 — 65 — 66 — 67 — 68 — 69 —	МС		8 12 16	CL	CLAY (CL) Brown, very stiff, wet Some gravel at 61' PID = 1 ppm Unconsolidated undrained triaxial con Su at 5% strain, (see Appendix B)	npression test		TxUU	3080	2090		16.5	117
70 — 71 — 72 — 73 — 74 — 75 —	МС		<u>50</u> 5"	SP-SM	SAND with SILT (SP-SM) Brown, very dense, wet, some gravel a PID = 1 ppm	ıt 72'							
76 — 77 — 78 — 79 — 80 —	МС		12 24 30		PID = 1 ppm Slough in sampler, blow counts are no Some gravels at 77', drilled to 80', slou while sampling	igh encountered							
81 — 82 — 83 — 84 — 85 —					Boring terminated at a depth of 80 fee Boring backfilled with cement grout u method. Groundwater encountered at the app 13.0 feet	ising tremie							
86 — 87 — 88 — 89 —													
90 – 1 C	vasa onsu	lting	1	<u> </u>			Proj	ect No	. DI003	3	Fi	gure A-	3


PRO.	JECT:			7	825 San Leandro Street Oakland, California	Log of Bo	ring	B-2	2		Page	e 1 of 3
Borir	ng loc	ation	: 5	ee Si	te Plan, Figure 2		Logo	ged by:	D. Iwa	isa	-	
Date	starte	ed:	8	8/5/22	Date finished: 8/5/2	2						
	-				v stem auger and rotary wash							
		-		-	40 lbs. / 30 inches Hammer type: Saf			LABO	ORATOF	RY TEST I	DATA	
Sam					fornia (MC) , Standard Penetration Test (S	SPT), Shelby tube			jth		iture %	
DEPTH (feet)	Type	Sample Sample	Blows/ foot	ГІТНОГОĞY	MATERIAL DESCRIPT	TION	Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	es .c	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
<u>ā</u> £	Sar	San	9B fo	5	Approx. Ground Surface Elevation:	11.4 feet, NAVD88	Stre	Lb Pro	Sh	Fines %	Na	63
1— 2—				SM/ GM	5" thick concrete SILTY SAND and GRAVEL (SM/GM) Yellow brown, some cobbles, PID = 4	15 ppm [FILL]						
2 3— 4—	Shelby				CLAY (CH) Black to dark gray, stiff, moist Unconsolidated undrained triaxial co (see Appendix B)	ompression test,	TxUU	320	1180		31.3 32.6	91 89
5— 6—				cu	Atterberg limits test: PI = 48, LL = 73 Permeability test: K = 2.25 X10 ⁻⁶ cm/9 Gray brown, 500 psi, push pressure		_					
7— 8—				СН			_					
9— 10— 11—	MC		3 10 14	sc	CLAYEY SAND (SC) Green-gray, very stiff, moist, sand ler odor, PID = 61 ppm	nses, petroleum	-				12.1	126
12— 13— 14—					8/15/22, 10:30am CLAY (CL) Green-gray, medium stiff, wet		_					
15— 16— 17—	Shelby			CL	Unconsolidated undrained triaxial co (see Appendix B) Consolidation test: Po = 9.0 ksf, Cec Medium stiff, wet	-		1120	940		22.9 23.2	104 101
18— 19— 20—												
	МС		2 7	$\left  - \right $	PID = 16 ppm CLAYEY SAND (SC)		_					
21 — 22 — 23 —	_		14	sc	Gray medium dense, wet							
24 —												
24 — 25 —			2	СН	CLAY (CH) Gray, very stiff, wet, PID = 10 ppm							
26 — 27 —	MC		16 19		SAND with SILT (SP-SM) Brown, medium dense, wet, coarse c	irained	_					
28 —				SP-SM		,	_					
29 —							_					
30												
	vasa onsu	ltina				Р	roject No	. DI003	3	Fi	gure A-	4



PRO.	JECT:			78	<b>825 San Leandro Street</b> Oakland, California	Log of	Bori	ing	B-2	2		Page	e 3 of 3
	SA	MPL	ES					l	ABOR	ATOR	Y TES	T DAT	A
DEPTH (feet)	Sampler Type	Sample	Blows/ foot	ГІТНОГОĞY	MATERIAL DESCRI	PTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
61 —	МС	0	6 6 13	CL	CLAY (CL) continued No recovery								
62 —	мс		10 50	SP-SM	SAND with SILT (SP-SM)	2							
63 — 64 — 65 —			5″	CL	Brown, dense, wet, fine grained, PID SANDY CLAY (CL) Brown, hard, wet	<u>= 2 ppm</u>							
66 — 67 —					SILTY SAND with GRAVEL (SM) Brown, dense, wet								
68 — 69 —				SM			_						
70 — 71 —	мс		18 <u>50</u> 5″		PID = 3 ppm						13.6		
72 — 73 — 74 —			5		Boring terminated at a depth of 71 Boring backfilled with cement grou method. Groundwater encountered at the a 12.5 feet	t using tremie	 of						
75 — 76 —							_						
77 — 78 —							_						
79 — 80 —							_						
81 — 82 —							_						
83 — 84 —													
85 —							_						
86 — 87 —							_						
88 — 89 —							_						
90 – 1 lv	vasa onsu		<u> </u>				Proj	ect No	. DI003	3	Fi	gure A-	6

PROJECT: <b>7825 San Leandro Street</b> Oakland, California <b>Log of</b>							Bori	ing	<b>B-</b> 3	•		Page	e 1 of 3
Borir	ng loca	ation	: 5	iee Si	ite Plan, Figure 2	1		Logo	jed by:	D. Iwa	isa		
Date	starte	ed:	8	8/11/2	22 Date finished: 8/11	/22							
Drilling method: Hollow s					w stem auger and rotary wash								
-		-			40 lbs. / 30 inches Hammer type: Sa	afety			LAB	ORATOF	Y TEST (	DATA	
Sam				d Cali	ifornia (MC)					Ę		ture %	
но		AMPL		LOGY	MATERIAL DESCRIF	PTION		بے بے	Ft e g	Streng 'Sq Ft		I Mois tent, 9	nsity u Ft
DEPTH (feet)	Sampler Type	Sample	Blows/ foot	ПТНОГОGY	Approx. Ground Surface Elevatior	13 9 feet NAVD88	2	Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
	01	0			8" concrete	1. 15.9 1001, 10/1000	,	. 01					
1_					CLAYEY SAND (SC)	Resistance value tes	-+ <b>†</b> -						
2-				SC		= 8 (see Appendix E							
3-	МС		4 3		CLAY with SAND (CH)							25.6	90
4-	IVIC		4	СН	Dark brown, medium stiff, moist, Pl	D = 2 ppm [FILL]	_						
5-					CLAYEY SAND (SC)		*						
	мс		3 6	sc	Gray, loose, moist, PID = 2 ppm [FIL	L]							
6-			5										
7-					CLAY (CH)								
8-					Dark gray, medium stiff, moist, PID	= 2 ppm	_						
9—							_						
10-			4	СН	▼ 8/11/22, 9:25am, PID = 2 ppm		_	-					
11_	МС		3		Corrosion test (see Appendix B)		_					95.7	44
12-			2		Consolidation test, Cec=0.41, Cer=0 (See Appendix B)	).04							
					Soft, wet, some organics								
13—					CLAY (CL)								
14—					Green-gray, very stiff, wet		_						
15 —			9				-						
16—	MC		12 17	CL	PID = 2 ppm Atterberg limits test, PI=20, LL=32 (	see Appendix B)	_						
17—						,	_	-					
18—													
19—					SAND (SW) Brown, loose, wet		_						
20				SW									
	МС		3 4		CLAY (CL)								
21—			8		Brown, medium stiff to stiff, wet, Pll	D = 3 ppm	_						
22 —							_						
23 —							_						
24 —							_						
25 —			2		Stiff, wet, PID = 2 ppm		_	-					
26 —	МС		8	CL	Unconsolidated undrained triaxial	compression test:	_	TxUU	1490	2310		22.2	107
27 —			12		Su at 5% strain (see Appendix B)		_						
							_						
28—								1					
29—							_						
30 —						1							
lwasa Consulting							Proj	ect No	. DI003	3	Fig	gure A-	7

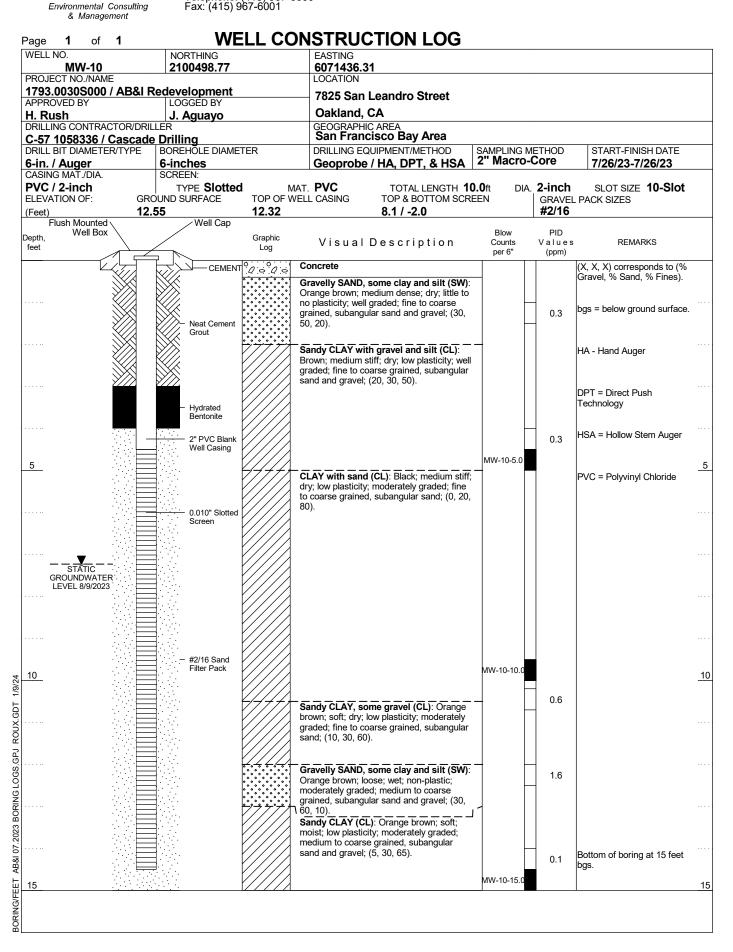
PROJECT: 7825 San Leandro Street Oakland, California Log of								Boring B-3 Page 2 of 3								
	SA	MPL	.ES					L	ABOR	ST DATA						
DEPTH (feet)	Sampler Type	Sample	Blows/ foot	ГІТНОГОӨҮ	MATERIAL DESCRIPTION			Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft			
31 — 32 — 33 — 34 —	MC		2 6 13	CL	CLAY (CL) continued, converted to r PID = 2 ppm	otary wash at 30'										
35 — 36 — 37 —	MC		3 6 12		PID = 0 ppm CLAYEY SAND (SC)											
38 — 39 — 40 — 41 — 42 — 43 —	МС		7 15 22	sc	Gray-brown, medium dense, wet PID = 2 ppm		-				46.0					
44 — 45 — 46 — 47 — 48 — 49 —	МС		4 11 16		CLAY (CL) Brown, very stiff, wet, PID = 2 ppm		-									
50 — 51 — 52 — 53 — 54 —	МС		11 16 20	CL	PID = 2 ppm Unconsolidated undrained triaxial c Su at 5% strain (see Appendix B)	ompression test:	-	TxUU	2540	2640		19.0	113			
55 — 56 — 57 — 58 — 59 —				SP-SM	SAND with SILT (SP-SM) Brown, very dense, wet, some grave	ls at 57.0′	-									
60- 10	vasa onsu	lting	•	·			Proj	ect No	. DI003	3	Fi	gure A-	8			



PROJ	JECT:			7	' <b>825 San Leandro Street</b> Oakland, California	Log of B	oring	B-4	ŀ		Page	e 1 of 3	
Borin	ng loc	ation	: 5	See Si	te Plan, Figure 2	I	Logo	ged by:	D. Iwa				
Date	starte	ed:	8	8/3/22	2 Date finished: 8/8/2	22							
	ng m				w stem auger and rotary wash								
		-		-	40 lbs. / 30 inches Hammer type: Sa	fety		LABC	DRATOF	RY TEST			
Samp					fornia (MC)				i gt		sture %		
DEPTH (feet)	Sampler Type	Sample Sample	Blows/ C	ГІТНОГОСУ	MATERIAL DESCRIP		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft	
<u> </u>	Š	Sa	B 4		Approx. Ground Surface Elevation 4.5" thick concrete	: 11.8 feet, NAVD88	5 ⁻¹	un ⊓	SI	Ē	Ż		
1 — 2 — 3 —	МС		6	SM/ GM	SILTY SAND and GRAVEL (SM/GM) Red brown and yellow brown, very o occasional metal debris [FILL] PID = 9 ppm	dense, moist,				46.4			
4— 5—			11		CLAY (CH) Black, stiff, moist PID = 9 ppm		_						
6— 7—	МС		3 3 10	СН	Rig breaks down, resume drilling on Permeability test; k=8.5x10-8 cm/sec						29.6	93	
8—													
9— 10—			2		SANDY CLAY (CL) Brown, stiff, moist PID = 2 ppm		_						
11 — 12 — 13 —	MC		6 7	CL	Corrosion test (see Appendix B) Consolidaton test; Cec=0.11, Cer=0.	03 (see Appendix B)	_				23.2	101	
14 — 15 —					8/8/22, 10:05am (unstabilized)		_						
16 — 17 —	МС		0 3 7		PID = 2 ppm CLAY (CL) Gray brown, medium stiff, wet						24.9	100	
18— 19—							_						
20 — 21 —	мс		4 8		Stiff, wet PID = 3 ppm								
22 —			10	CL			_						
23 — 24 —													
25 — 26 —	МС		11 12 14		Hard, wet, PID = 3 ppm						20.0	111	
27 — 28 —													
29 — 30 —							_						
<b>.</b> Iv	vasa onsu	lting					Project No	o. DI003	3	Fig	gure A-	10	

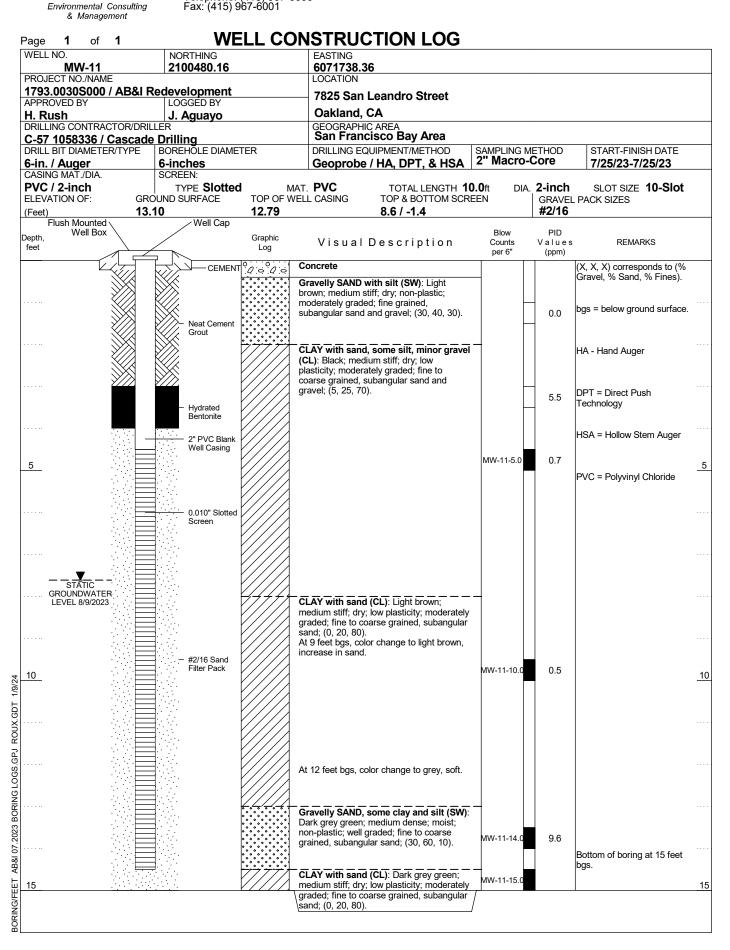
PRO.	JECT:			78	<b>325 San Leandro Street</b> Oakland, California	Log of E	Bori	ing	<b>B-4</b>	ŀ		Page	e 2 of 3	
	SA	MPL	.ES					LABORATORY TEST DAT						
DEPTH (feet)	Sampler Type	Sample	Blows/ foot	ГІТНОГОӨҮ	MATERIAL DESCRI	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft	
31— 32— 33—	МС		3 8 12	CL	CLAY (CL) continued Stiff, wet, PID = 3 ppm Converted to rotary wash drilling at Unconsolidated undrained triaxial c Su at 5% strain (see Appendix B)		_	TxUU	1870	1230		23.4	104	
34 — 35 — 36 —	МС		5 11 20	ML	SILT with SAND (ML) Brown, very stiff, wet PID = 2 ppm							21.0	108	
37 — 38 — 39 —				SM	SILTY SAND (SM) Brown, medium dense, wet, fine gra	ained		-						
40 — 41 — 42 — 43 —	МС		5 13 17		PID = 2 ppm CLAY (CL) Brown, very stiff, wet			-						
44 — 45 — 46 — 47 — 48 —	МС		8 14 24	CL	PID = 2 ppm		-	-						
49 — 50 — 51 — 52 —	МС		7 18 24		PID = 3 ppm		-					21.8	11	
53 — 54 — 55 —				sc	CLAYEY SAND (SC) Brown, wet			-						
55 — 57 — 58 — 59 —				CL	SANDY CLAY (CL) Brown, hard, wet		-							
60-	vasa onsu	L		<u>                                      </u>			Proi	iect No	. DI003	3	Fic	gure A-1	11	

SAMPLES     A       adA     bit       bit     bit       MATERIAL DESCRIPTION		Type of Strength Test			Y TES	ST DAT	A
MC 15 CLAY (CL) continued PID = 2 ppm		e of Strength Test	^o ressure q Ft				
PID = 2 ppm		Type	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
	-					24.9	10
MC 7 9 15 SM SILTY SAND (SM) Brown, wet CL SANDY CLAY (CL Brown, wet, difficult drilling SAND with SILT (SP-SM) Gray brown, very dense, wet, coarse grained							
MC 9 22 50 3" Boring terminated at a depth of 81.3 feet. Boring backfilled with cement grout using tremie method. Groundwater encountered at the approximate depth of 14.0 feet							


PRO.	JECT:			7	<b>7825 San Leandro Street</b> Oakland, California	Log of Bo	ring	B-5	5		Page	1 of 3
Borir	ng loc	ation	: 5	iee Si	ite Plan, Figure 2		Logo	jed by:	D. Iwa	isa		
Date	starte	ed:	8	8/9/22	2 Date finished: 8/9/2	22						
	-				w stem auger and rotary wash							
-		-			40 lbs. / 30 inches Hammer type: Sa	fety		LABO	ORATOF	RY TEST I	DATA	
Sam				d Cali	ifornia (MC)				ŧ		ture 6	
		AMPL	ES	067	MATERIAL DESCRIP	TION		E e J	treng Sq Ft		Moist tent, 9	nsity L Ft
DEPTH (feet)	Sampler Type	Sample	Blows/ foot	ГІТНОГОĞY			Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
	Š	Sa	B		Approx. Ground Surface Elevation	: 11.5 feet, NAVD88	St T	J G ⊂ ⊐	S	Ē	z	0
1-				SM/ GM		f	_					
2-					Brown, dense, moist, 4" to 6" pieces debris [FILL]	of concrete	_					
3—					CLAY CH)							
					Black, medium stiff, moist							
4-					PID = 2 ppm							
5 —			2		Atterberg limits test, PI=42, LL=63 (s							
6-	MC		3 8	СН			_				32.4	83
7-			-		ne ne	esistance value test, ─ 8 (see Appendix B)	_					
8-						o (see Appendix b)	_					
9—												
10-	MC		3 6				_				21.6	105
11 —	MC		9		CLAY CL)	_	_				21.0	105
12—				CL	Gray-brown, stiff, moist, PID = 3 ppr	n	_					
13—												
14—					SAND with SILT (SP-SM) Brown, medium dense, moist, coars	e grained	_					
				SP-SM		- 5						
15 —	МС		4 7		8/9/22, 10:15am		_					
16—	IVIC		10		CLAY CL) Brown, stiff, wet, PID = 3 ppm		-					
17—				CL			_					
18—						<b>`</b>						
19—					SAND with SILT and GRAVEL (SP-SM Brown, medium dense, wet, coarse		_					
20 —												
	МС		3 20	SP-	PID = 2 ppm					8.6		
21—	me		24	SM			-			0.0		
22 —							-					
23 —												
24 —					CLAY CL) Brown, stiff, wet		_					
25 —												
	мс		3 8	CL	PID = 2 ppm							
26 —			13				_					
27 —							-					
28 —					CLAYEY GRAVEL (GC)		_					
29 —				GC	Brown, medium dense, wet		_					
30 —												
	vasa							Dicco				
L C	onsu	lting				P	roject No	. 1003	5	Fig	jure A-1	5

PRO.	JECT:			7	<b>825 San Leandro Street</b> Oakland, California	Log of E	Bori	ing	B-5	5		Page	e 2 of 3
	SA	MPL	.ES					l	ABOR	ATOR	Y TES	T DAT	A
DEPTH (feet)	Sampler Type	Sample	Blows/ foot	ГІТНОГОĠ	MATERIAL DESCRI	PTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
31— 32— 33— 34—	MC		3 7 15	CL	CLAYEY GRAVEL (GC) continued, cor wash at 30.0' CLAY (CL) Brown, stiff to very stiff, wet, PID = 2							24.3	104
35 — 36 — 37 — 38 — 39 —	MC		30 50 2″	SP-SM	SAND with SILT (SP-SM) Brown, very dense, wet, PID = 1 ppm CLAYEY SAND (SC)	1	-						
40 — 41 — 42 — 43 — 44 —	МС		5 13 18	SC	CLAY (CL) Brown, very stiff, wet, PID = 2 ppm							20.9	109
45 — 46 — 47 — 48 — 49 —	MC		5 15 18	CL	PID = 3 ppm								
50 — 51 — 52 — 53 — 54 — 55 — 56 — 57 — 58 —	МС		7 8 12		Stiff, wet, PID = 2 ppm Increased sand content							18.8	118
59— 60—				SP-SC	SAND with CLAY (SP-SC) Brown, dense to very dense, wet								
1 ^w	vasa onsu	lting					Proj	ect No	. DI003	3	Fig	gure A-1	14

PRO.	JECT:			78	<b>325 San Leandro Street</b> Oakland, California	.og of B	ori	ng	B-5	5		Page	e 3 of 3
	SA	MPL	ES					L	ABOR	ATOR	Y TES	T DAT	A
DEPTH (feet)	Sampler Type	Sample	Blows/ foot	ГІТНОГОĠŶ	MATERIAL DESCRIPTIO	ЛN	-	Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
61 —	MC		10 34 40	SP-SC	SAND with CLAY (SP-SC) continued PID = 1 ppm		_						
62	MC	•	21 50 6″	CL	CLAY (CL) Brown, hard, wet SAND with SILT (SP-SM) Brown, very dense, wet, coarse grained No recovery								
74 — 75 — 76 — 77 — 78 — 79 — 80 —	MC			SP-SM	Driller indicates bottom of hole collapse sample of soil for classification purpose PID = 1 ppm	es							
80					Boring terminated at a depth of 80.0 fee Boring backfilled with cement grout usir method. Groundwater encountered at the approx 15.0 feet	ng tremie							
	vasa Ionsu			· I			Proi	act No	. DI003	3	Eiz	gure A-1	15




555 12th Street Suite 125 Oakland, CA 94607 Telephone: (415) 967-6000 Fax: (415) 967-6001 ROUX ASSOCIATES INC.





555 12th Street Suite 125 Oakland, CA 94607 Telephone: (415) 967-6000 Fax: (415) 967-6001 ROUX ASSOCIATES INC.

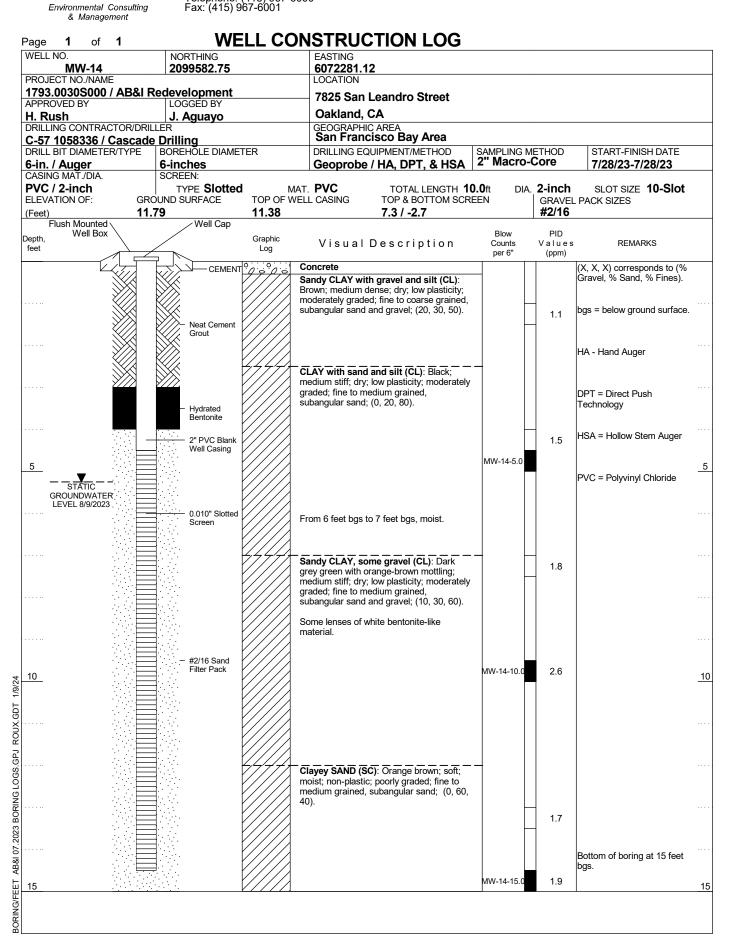




Environmental Consulting & Management 555 12th Street Suite 125 Oakland, CA 94607 Telephone: (415) 967-6000 Fax: (415) 967-6001

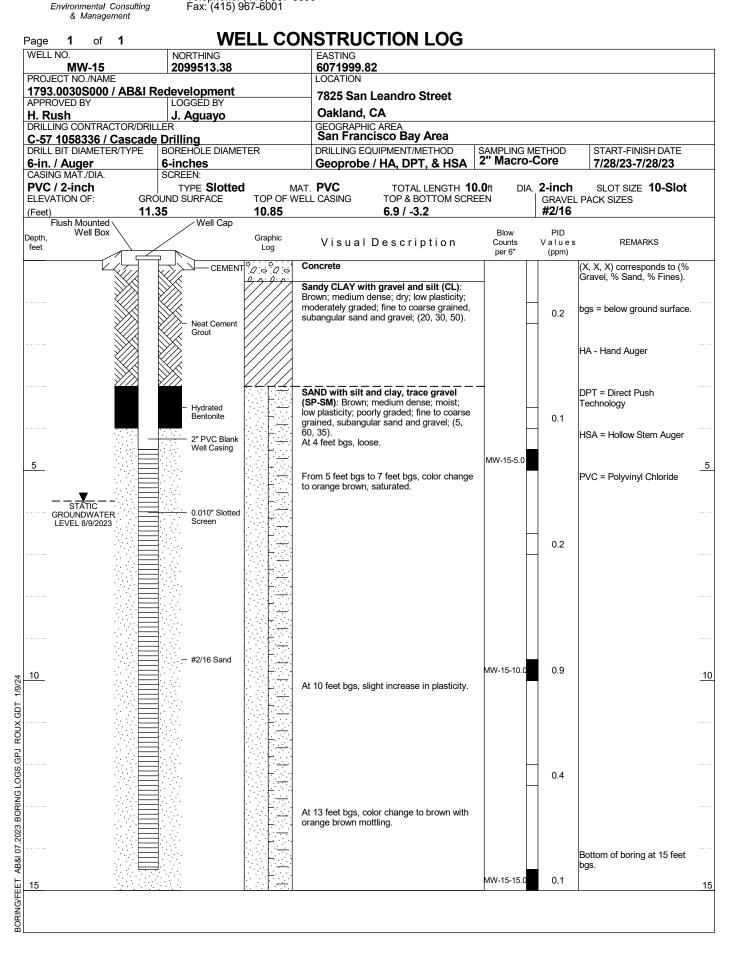
WELL		40					EASTING	
PRO.II	ECT NO./			2	100178.68		6072047.54	
1793	.0030S	000 /		Rede	velopment		7825 San Leandro Street	
APPR	OVED BY			L	OGGED BY			
H. RI	USh ING CON				. Aguayo			
	10583				llina		GEOGRAPHIC AREA San Francisco Bay Area	
DRILL	BIT DIAN	METER		BOF	REHOLE DIAME	TER	DRILLING EQUIPMENT/METHOD SAMPLING METHOD START-FINISH DATE Geoprobe / HA, DPT, & HSA 2" Macro-Core 7/25/23-7/25/23	
6-in.	/ Auge	r			nches		Geoprobe / HA, DPT, & HSA 2" Macro-Core 7/25/23-7/25/23	
	/ <b>2-inc</b>				REEN: TYPE <b>Slotted</b>	м	AT. PVC TOTAL LENGTH 10.0ft DIA. 2-inch SLOT SIZE 10-Slot	
	ATION OF		GF		SURFACE		ELL CASING TOP & BOTTOM SCREEN   GRAVEL PACK SIZES	
(Feet)			14	.08		13.73	-0.4 / -10.4 #2/16	
	Flush Mo We	untea \ II Box	$\backslash$		Well Cap	Oranhia	Blow PID	
Depth, feet			$\geq$			Graphic Log	Visual Description Counts Values REMARKS per 6" (ppm)	
			<u></u>	آ(		00	Concrete (X, X, X) corresponds to (%	
			X/A	$\otimes$	Semigration CEMENT		Gravelly SAND with silt (SW): Dark Gravel, % Sand, % Fines).	
			$\mathbb{X}$		$\geq$		brown; medium dense; dry; low plasticity;	•••
			$\otimes$		k l		moderately graded; fine to coarse grained, subangular sand and gravel; (30, 50, 20).	
			$\mathbb{X}$		$\geq$		0.0 HA - Hand Auger	
			$\otimes$		< l			
			$\mathbb{X}$	$\langle \rangle \rangle$	$\mathbf{\hat{z}}$		DPT = Direct Push Technology	
					<		HSA = Hollow Stem Auger	• •
5			$\mathcal{Y}$				MW-12-5.0 0.2	
					<ul> <li>Neat Cement</li> </ul>	77777	CLAY, trace sand (CL): Black; stiff; dry; modium plosticity; modurately graded fine	
			¥//		Grout		medium plasticity; moderately graded; fine grained, subangular sand; (0, 95, 5).	
					Ś			
			¥// ·		2" PVC Blank			
					Well Casing			
•••••••		<u> </u>	Ľ/)					• •
	GROUND	NATER						
	LEVEL 8/	9/2023	$\langle \rangle \rangle$					
10			) XX				MW-12-10.0	_1
			$\langle \rangle \rangle$		//			
						<i>     </i>	CLAY with sand, trace gravel (CL): Light	•••
					- Hudrotod		brown with green mottling; medium stiff;	
					<ul> <li>Hydrated Bentonite</li> </ul>		medium grained, subangular sand and	
				· . · .			gravel; (5, 20, 75).	
					•		At 13 feet bgs, moist. 0.9	
					•			•••
15			:::E	≣∷∵			MW-12-15.0	1
				≣∵	·	77777	Sandy CLAY (CL): Light brown; soft;	_
				≣∷∴			moist; low plasticity; poorly graded; fine grained, subangular sand; (0, 30, 70).	
				≣∷∷	•			
			. E		0.010" Slotted		0.1	
			::::E		. Screen	$///\lambda$		
			E	≣∵	·.			•••
				≣∷				
				≣∷∷	•			
20				∃∷	•	┟┥┥┥┝┾	CLAY with sand (CL): Grey; stiff, dry; high	2
			:::E				plasticity; poorly graded; fine grained sand,	
			=	≝∵	<ul> <li>#2/16 Sand</li> <li>Filter Pack</li> </ul>		subangular sand; (0, 15, 85).	•••
								,
				≣∷∷	•		Gravelly SAND (SP): Orange brown; mdium dance: meint: ann platic: pact/	•••
				≣∵∵	·.		medium dense; moist; non-plastic; poorly graded; medium to coarse grained,	
			⊨	<b>∃</b> ::			subangular sand and gravel; (60, 40, 0).	
				∃:	·.		CLAY with sand and gravel (CL): Orange brown; very stiff; moist; low plasticity; well Bottom of boring at 25 feet	• •
25				7			graded; medium to coarse grained, MW-12-25.0 bgs.	2
							subangular sand; (15, 25, 60).	

BORING/FEET AB&I 07.2023 BORING LOGS.GPJ ROUX.GDT 1/9/24




555 12th Street Suite 125 Oakland, CA 94607 Telephone: (415) 967-6000 Fax: (415) 967-6001 ROUX ASSOCIATES, INC. Environmental Consulting & Management

WELL NO. MW-13		NORTH 20997			EASTING 6072428.24					
PROJECT NO./NAM	E	2039/	50.07		LOCATION					
1793.0030S000						eandro Street				
APPROVED BY		LOGGEI								
H. Rush		J. Agu	layo		Oakland, C					
DRILLING CONTRAC			-		GEOGRAPHIC	AREA				
<u>C-57 1058336 / </u>		Drilling				sco Bay Area	1			
DRILL BIT DIAMETE	R/TYPE	BOREHOL		ER		IPMENT/METHOD	SAMPLING M	ETHOD	START-FINISH DATE	
6-in. / Auger		6-inches	S		Geoprobe /	HA, DPT, & HSA	Z Wacro-	Jore	7/31/23-7/31/23	
CASING MAŤ./DIA. PVC / 2-inch		SCREEN:	Clattad		AT. <b>PVC</b>	TOTAL LENOTL 4		1 inch	SLOT SIZE 10-Slot	
ELEVATION OF:	GRO	UND SURE	Slotted ACE		AT. PVC /ELL CASING	TOTAL LENGTH <b>1</b> TOP & BOTTOM SCR		2-inch	PACK SIZES	
(Feet)	13.	18		12.68		3.7 / -6.3		#2/16		
Flush Mounted		W	ell Cap							
epth, Well Box	$\backslash$			Graphic	Visual D	escription	Blow Counts	PID Values	REMARKS	
feet	$ \longrightarrow                                   $			Log	VISUALE	000011011011	per 6"	(ppm)		
	<u>/</u>	th/JE	- CEMENT	0.000	Concrete				(X, X, X) corresponds to (%	,
	$\mathbb{X}$			0.0.0.0.0					Gravel, % Sand, % Fines).	
	$\gg$		ļ	· · <i></i> · · · <i></i> ·	04110 101					
	$\langle \rangle \rangle$	$\mathbb{K}/\mathbb{A}$				ilt, and gravel (SC): moist; non-plastic; well			bgs = below ground surface	
		$\otimes$			graded: fine to coa	rse grained, subangular				
	$\underline{\forall}$	K///.		[[[]]]	sand and gravel; (2			0.2	HA - Hand Auger	
	$\otimes$	$\otimes$								
	Y/X	Nea	t Cement	<i>1,1,1,1,</i>			MW-13-3.0	27.3		
	$\otimes$	Gro		////	CLAY, some sand	, trace gravel (CL): high plasticity; poorly			DPT = Direct Push	
	$\times\!\!\!\!\times\!\!\!\!\times$	$\mid > > > > > > > > > > > > > > > > > > >$		/////	graded: fine to mer	lign plasticity; poorly dium, subangular sand			Technology	
	$\times$	$\bigotimes$	ļ	/////	and gravel; (5, 15,	80).		7.0	HSA = Hollow Stem Auger	
	$\gg$			/////				1.0		
5	×// –	К//д— 2" Р	VC Blank	/////	At 4.5 feet bgs, gre	y blue plastic wrap.	MW-13-5.0			
	$\otimes$		Il Casing	/////					PVC = Polyvinyl Chloride	
	$\langle / \rangle$	K///		////\			MW-13-6.0	324.0		
· · · · · · _				/////	At 6 feet bas, shee	n substance observed in				
			[		soil.					
GROUNDWATER		_ Hvd	Irated	////A				1		
LEVEL 8/9/2023			itonite	/////				139.0		
			ļ					1		
				<i>4444</i> 7	CLAY with sand	some gravel (CL): Dark				
			ļ	/////	brown with orange	mottling; stiff; moist;				
				////\	high plasticity; poor	ly graded; fine to		1		
				/////	medium, subangula 20, 70).	ar sand and gravel; (10,		86.9		
10				/////	20, 10).		MW-13-10.0			
				////A		and residue observed.				
				/////	At 9 feet bgs, some	e grey cementation				
			1		present.					
				////A						
				/////						
			10" Slotted							
		Scre	een	/////				4		
				$\Box \Box \Box \Delta$			L L	7.3		
				/////		CL): Light brown-grey				
					with orange mottlin plasticity; poorly gra	g; very stiff; moist; high				
					subrounded sand;					
						· · · · · · · · · · · · ·				
15		···· _ #2/4	16 Sand				MW-13-15.0	3.3		
			er Pack	////\		some sand (CL): Grey	;			
				/////	stiff; moist; mediun	n plasticity; poorly d, subangular sand; (5,				
			l		15, 80).	a, subanyulai salilu, (3,				
				/////	. ,					
				/////						
			l							
				/////						
				/////				-		
		<b>¦</b> :::		/////				4.1		
				/7///\		some sand (CL): Grey	; ]		Bottom of boring at 20 feet	
20				/////	stiff; moist; low plas	sticity; moderately d, subangular sand and	MW-13-20.0	6.0	bgs.	
20				/////	graded; fine graine		10-20.0	0.0		_




555 12th Street Suite 125 Oakland, CA 94607 Telephone: (415) 967-6000 Fax: (415) 967-6001 ROUX ASSOCIATES INC.





555 12th Street Suite 125 Oakland, CA 94607 Telephone: (415) 967-6000 Fax: (415) 967-6001

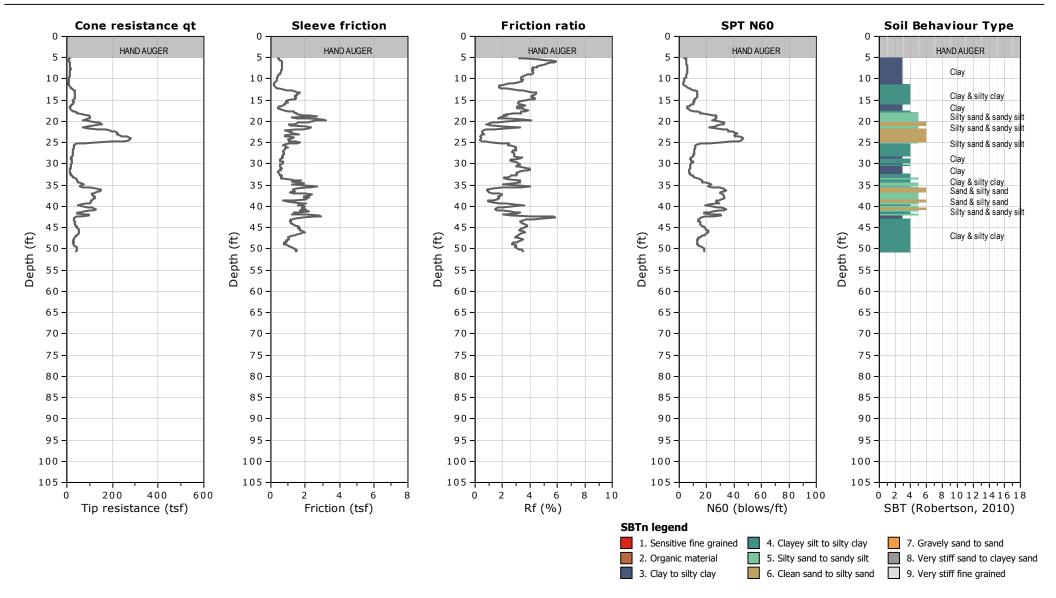




555 12th Street Suite 125 Oakland, CA 94607 Telephone: (415) 967-6000 Fax: (415) 967-6001 ROUX ASSOCIATES, INC. Environmental Consulting & Management

WELL NO. MW-16	NORTHING 2099937.48		EASTING 6071633.24							
PROJECT NO./NAME	•		LOCATION							
1793.0030S000 / A APPROVED BY	B&I Redevelopment		7825 San Leandro Street							
H. Rush	J. Aguayo		Oakland, CA							
DRILLING CONTRACTO	R/DRILLER		GEOGRAPHIC AREA San Francisco Bay Area							
C-57 1058336 / Cas DRILL BIT DIAMETER/T		TED	DRILLING EQUIPMENT/METHOD	SAMPLING MI		START-FINISH DATE				
6-in. / Auger	6-inches		Geoprobe / HA, DPT, & HSA	2" Macro-C	Core	7/27/23-7/27/23				
CASING MAT./DIA.	SCREEN:		-							
PVC / 2-inch ELEVATION OF: Feet)	TYPE Slotte GROUND SURFACE 13.58	d MA ⁻ TOP OF WE 13.17	T. PVC TOTAL LENGTH 10 LL CASING TOP & BOTTOM SCRE 9.1 / -0.9		2-inch GRAVEL #2/16	SLOT SIZE <b>10-Slot</b> PACK SIZES				
Flush Mounted							-			
epth, Well Box		Graphic	Visual Description	Blow Counts	PID Values	REMARKS				
feet		Log	•	per 6"	(ppm)					
		rie in the second second second second second second second second second second second second second second s	Gravelly SAND, some sand and silt (SW): Dark red brown; loose; dry; non-plastic;			(X, X, X) corresponds to (% Gravel, % Sand, % Fines).				
		••••••••••••••••••••••••••••••••••••••	vell graded; fine to coarse grained,			oravei, 70 Janu, 70 Filles).				
·····		S	ubangular sand and gravel; (30, 60, 10).			han a hala di f				
$\square$						bgs = below ground surface.	•			
	- Neat Cement Grout									
			SAND with clay, silt, and gravel (SW-SM)			HA - Hand Auger				
X		E	Brown; medium dense; dry; low plasticity;		0.4					
$\gg$			noderately graded; fine to coarse grained, subangular sand and gravel; (20, 50, 30).							
			<u> </u>			DPT = Direct Push				
	- Hydrated					Technology				
	Bentonite									
	2" PVC Blank	••••••••••••••••••••••••••••••••••••••	At 4 feet bgs, metal debris.			HSA = Hollow Stem Auger				
	Well Casing				0.5					
5				MW-16-5.0	3.5					
		A	At 5 feet bgs, some odor.			PVC = Polyvinyl Chloride				
	0.010" Slotte		At 6 feet bgs, color change to orange							
	Screen	lininini t	prown, increase in sand, white benotite-like							
		r i i i i i i i i i i i i i i i i i i i	naterial present.							
GROUNDWATER			CLAY with gravel, sand, and silt (CL):	-	0.5					
LEVEL 8/9/2023			Dark green grey; medium stiff; moist; low plasticity; well graded; fine to coarse		0.5					
			rained, subangular sand and gravel; (20,							
••••			20, 60). From 7 feet bgs to 7.5 feet bgs, lense of							
			ravel.							
·····		$\langle / / / \rangle$	At 7.5 feet bgs, moist.		-					
		$\langle / / / \rangle$			0.2					
	- #2/16 Sand Filter Pack			MW-16-10.0						
<u>10</u>			From 10 feet bgs to 13 feet bgs, saturated.							
		V///A								
		$\langle / / / \rangle$								
		$\langle / / / \rangle$								
		$\langle / / / \rangle$								
		$\langle /// \rangle$			0.0					
					1					
		<i>\\\\\\</i>	SAND with clay and silt, trace gravel (CL)	<u>.</u>		Bottom of boring at 15 feet				
			Dark green grey; loose; moist; low			bgs.				
15			plasticity; moderately graded; fine to nedium grained, subangular sand and	MW-16-15.0	0.1					
·			ravel; (5, 60, 35).	/		I	_			

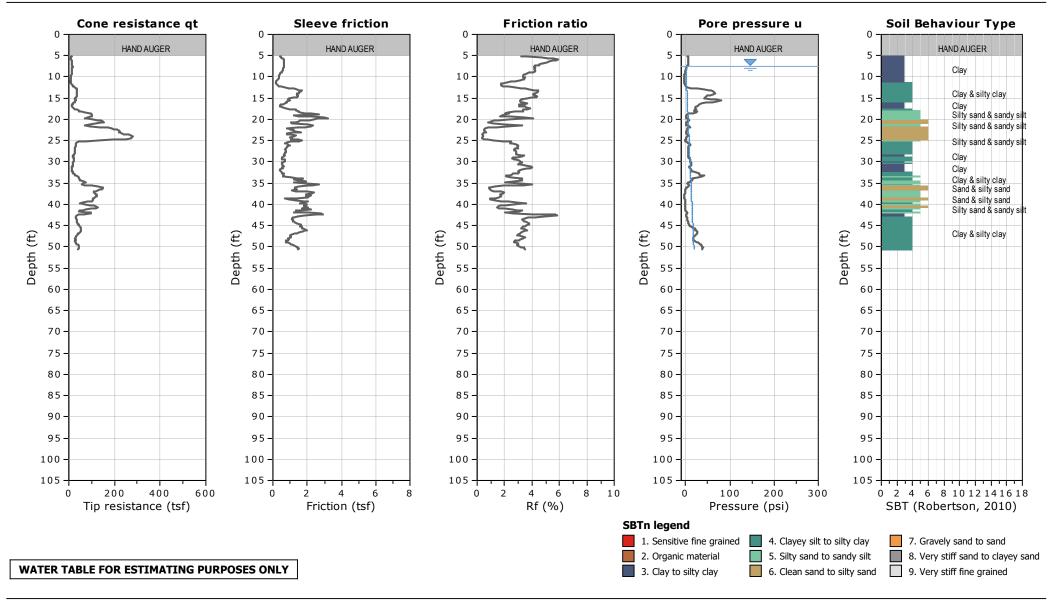



Environmental Consulting & Management 555 12th Street Suite 125 Oakland, CA 94607 Telephone: (415) 967-6000 Fax: (415) 967-6001

VELL NO. MW-17		DRTHING 1 <b>00267.44</b>		EASTING 6071319.16							
PROJECT NO./NAME				LOCATION							
793.00305000 / /				7825 San Leandro Street							
APPROVED BY		GGED BY									
H. Rush	J.	Aguayo		Oakland, CA							
RILLING CONTRACT				GEOGRAPHIC AREA San Francisco Bay Area							
<b>C-57 1058336 / Ca</b> DRILL BIT DIAMETER/		l <b>ing</b> EHOLE DIAME	тер	DRILLING EQUIPMENT/METHOD	SAMPLING M		START-FINISH DATE	_			
			IER		2" Macro-	Core					
6-in. / Auger Casing Mat./Dia.	SCRI	ches		Geoprobe / HA, DPT, & HSA	2 1114010	0010	7/26/23-7/26/23	_			
PVC / 2-inch		YPE Slotted	I MA	T. PVC TOTAL LENGTH 1		2-inch	SLOT SIZE 10-Slot				
ELEVATION OF:	GROUND		TOP OF WE				. PACK SIZES				
Feet)	12.43		12.20	7.9 / -2.1		#2/16					
Flush Mounted		∕ Well Cap									
epth, Well Box ∖	$\langle /$		Graphic	Visual Description	Blow Counts	PID Values	REMARKS				
eet	$\rightarrow$	<	Log	visual Description	per 6"	(ppm)					
//				Concrete		,	(X, X, X) corresponds to (%				
			17/17	Clayey SAND with gravel (SC): Black;	-		Gravel, % Sand, % Fines).				
Ň			///// r	nedium dense; dry; non-plastic; well			· · ·				
🗙				graded; fine to coarse grained, subangular sand and gravel; (20, 50, 30).		-	has - holow around out				
	$\times$			5anu anu yraver, (20, 30, 30).		0.2	bgs = below ground surface.	;.			
X	// K///	<ul> <li>Neat Cement Grout</li> </ul>				1					
	XI IX										
Ś							HA - Hand Auger				
	XX  XX										
							DPT = Direct Push				
		<ul> <li>Hydrated</li> </ul>	////				Technology				
		Bentonite									
····		– 2" PVC Blank		CLAY with sand (CL): Black; medium stiff;	;	0.2	HSA = Hollow Stem Auger				
		Well Casing		dry; low plasticity; well graded; fine to		0.2					
5		-		medium grained, subangular sand; (0, 20, 30).	MW-17-5.0						
5			///// `				PVC = Polyvinyl Chloride				
· · ·			K////								
· · · · · · · · · · · · · · · · · · ·											
		- 0.010" Slotted	$\langle /// \Lambda$								
		Screen									
			V///A								
			┟┤┥┥┥╞		. –	-					
				Sandy CLAY with silt (CL): Orange brown stiff; dry; low plasticity; poorly graded; fine	1;	0.0					
			//// t	o medium grained, subangular sand and		1					
				gravel; (10, 30, 60).							
GROUNDWATER ·			$\langle / / / \rangle$								
LEVEL 8/9/2023			$\langle / / / \rangle$								
			$\langle / / / \rangle$								
		- #2/16 Sand	$\langle / / / \lambda \rangle$								
0		Filter Pack	$\langle / / / \rangle$		MW-17-10.0	0.0					
			$\langle /// \Lambda$								
· .											
			レクケケイト	CLAY with sand, trace gravel (CL):	·						
•				Drange brown; stiff; dry; low plasticity;							
				boorly graded; fine to medium grained, subangular sand and gravel; (5, 25, 70).							
			V//// *	איז איז איז איז איז איז איז איז איז איז	⊢	-					
· .			K////			0.2					
· · ·											
· · · · · · · · · · · · · · · · · · ·											
			$\langle /// \Lambda$			4					
						0.0	Bottom of boring at 15 feet bgs.				
			V////		MW-17-15.0						
15											



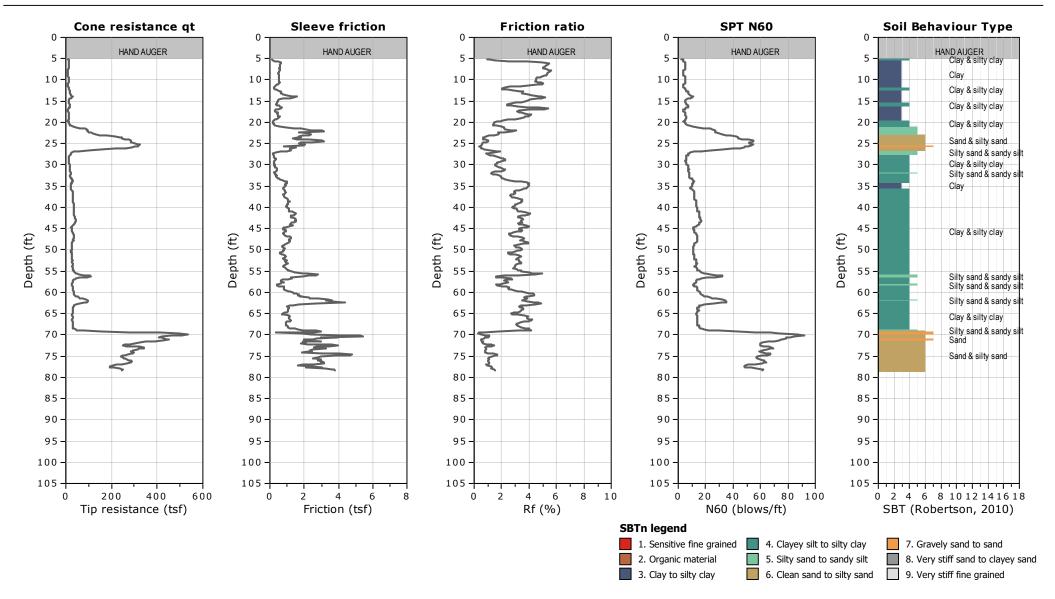
#### FIELD REP: NICK VAIA Cone ID: GDC-94


Total depth: 50.52 ft, Date: 2/11/2022





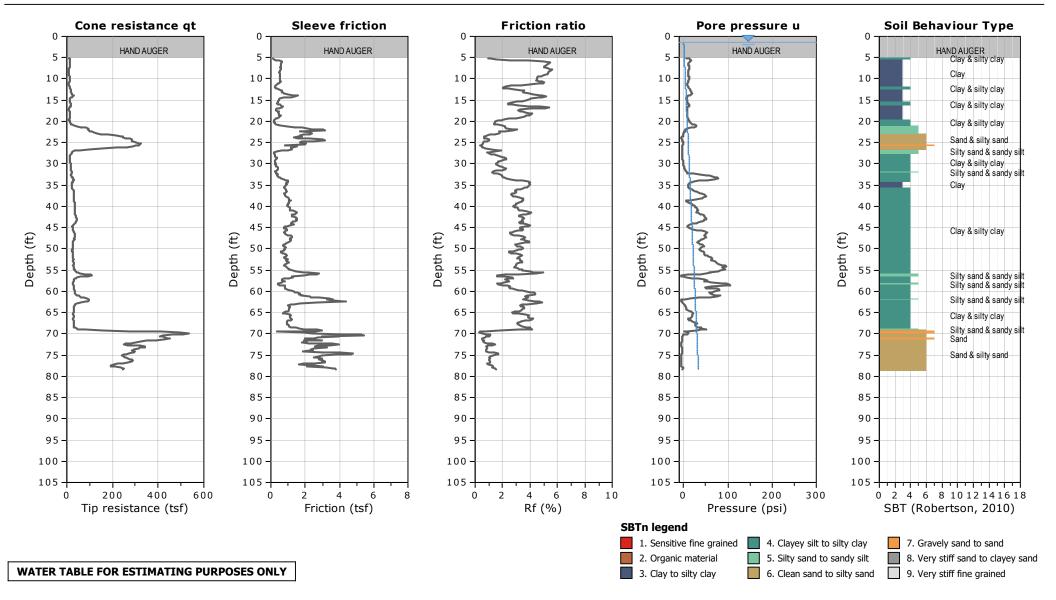
#### FIELD REP: NICK VAIA Cone ID: GDC-94


Total depth: 50.52 ft, Date: 2/11/2022





#### FIELD REP: NICK VAIA Cone ID: GDC-94

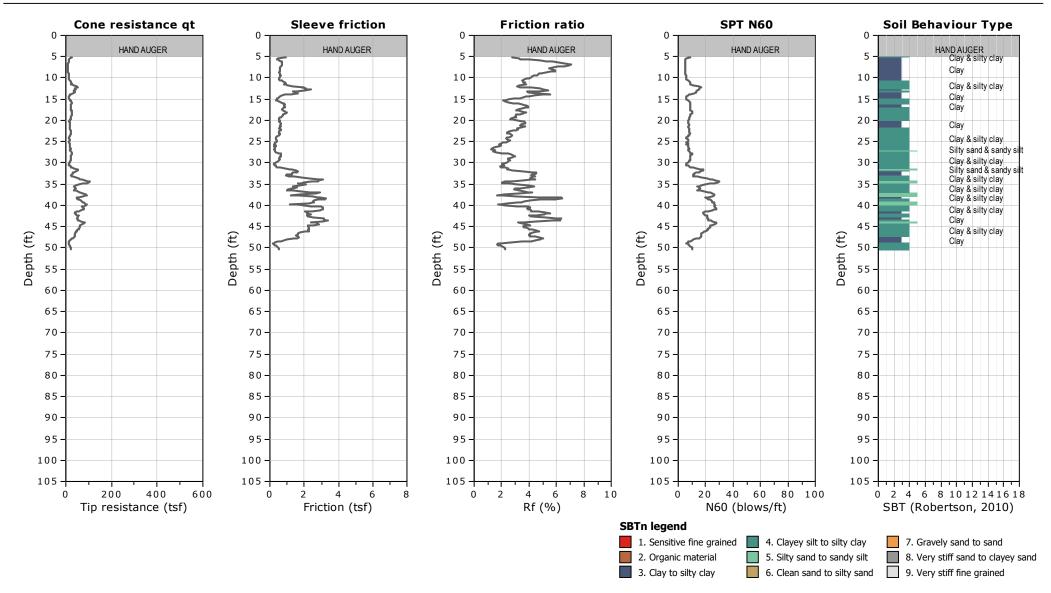

Total depth: 78.41 ft, Date: 2/11/2022





#### FIELD REP: NICK VAIA Cone ID: GDC-94

Total depth: 78.41 ft, Date: 2/11/2022






#### FIELD REP: NICK VAIANA Cone ID: GDC-89

Total depth: 50.36 ft, Date: 2/11/2022





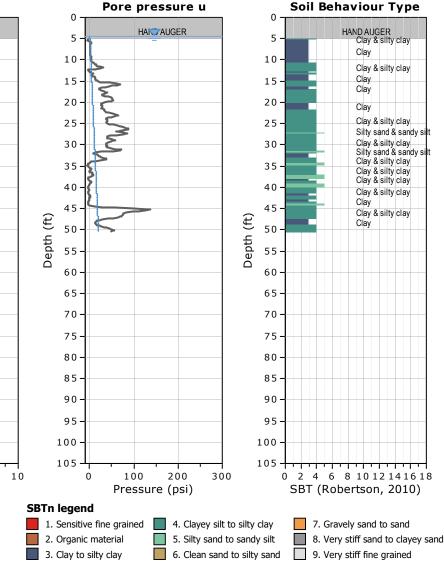


**CLIENT: HALEY & ALDRICH** 

SITE: AB&I FOUNDRY, OAKLAND, CA

# **CPT: CPT-C4**

#### FIELD REP: NICK VAIANA Cone ID: GDC-89


Total depth: 50.36 ft, Date: 2/11/2022

Cone resistance qt **Sleeve friction Friction ratio** Ο HAND AUGER HAND AUGER HAND AUGER Depth (ft) Depth (ft) Depth (ft) Depth (ft) 

105 -

0 2

Rf (%)



CPeT-IT v.19.0.1.24 - CPTU data presentation & interpretation software - Report created on: 3/2/2022, 12:40:44 PM

105-

Friction (tsf)

WATER TABLE FOR ESTIMATING PURPOSES ONLY

Tip resistance (tsf)

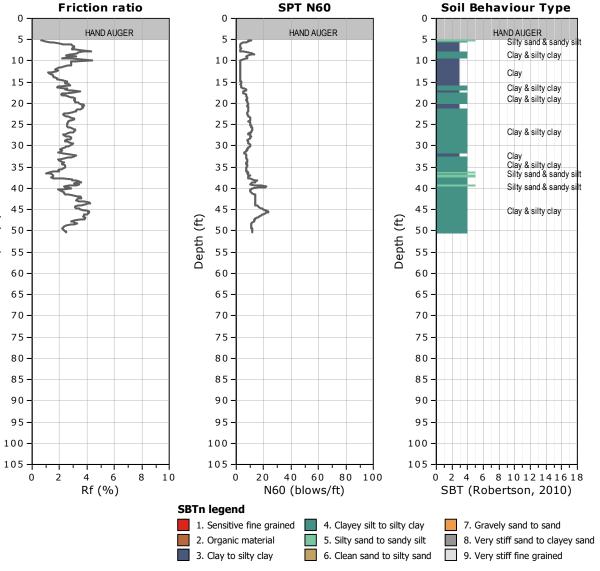


**CLIENT: HALEY & ALDRICH** 

SITE: AB&I FOUNDRY, OAKLAND, CA

# **CPT: CPT-C5**

#### FIELD REP: NICK VAIANA Cone ID: GDC-89

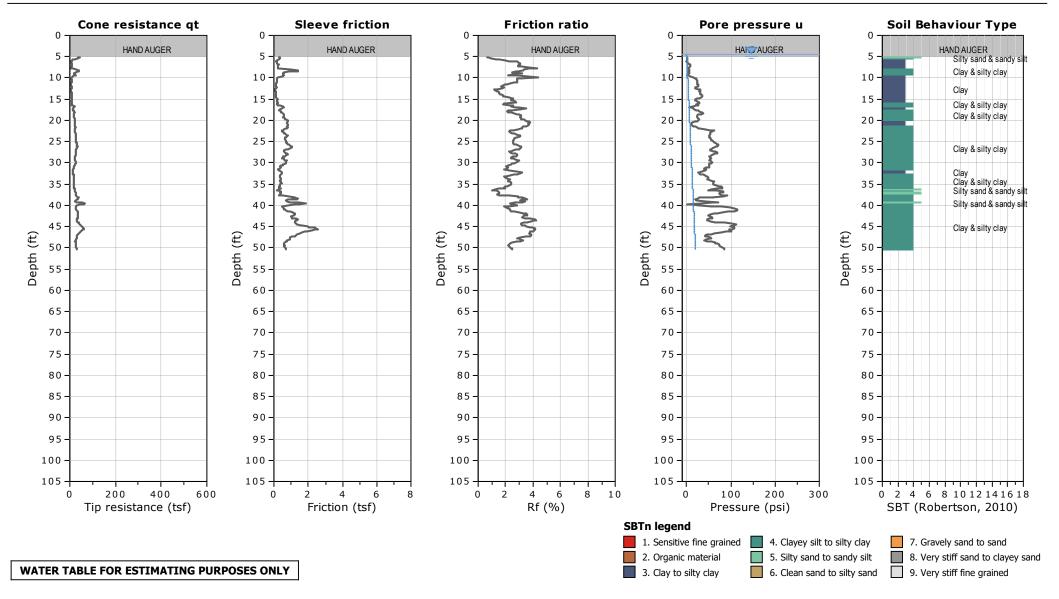

Total depth: 50.36 ft, Date: 2/11/2022

Cone resistance qt **Sleeve friction** Ο HAND AUGER HAND AUGER Ş Depth (ft) Depth (ft) Depth (ft) 

Tip resistance (tsf)

105 -

Friction (tsf)

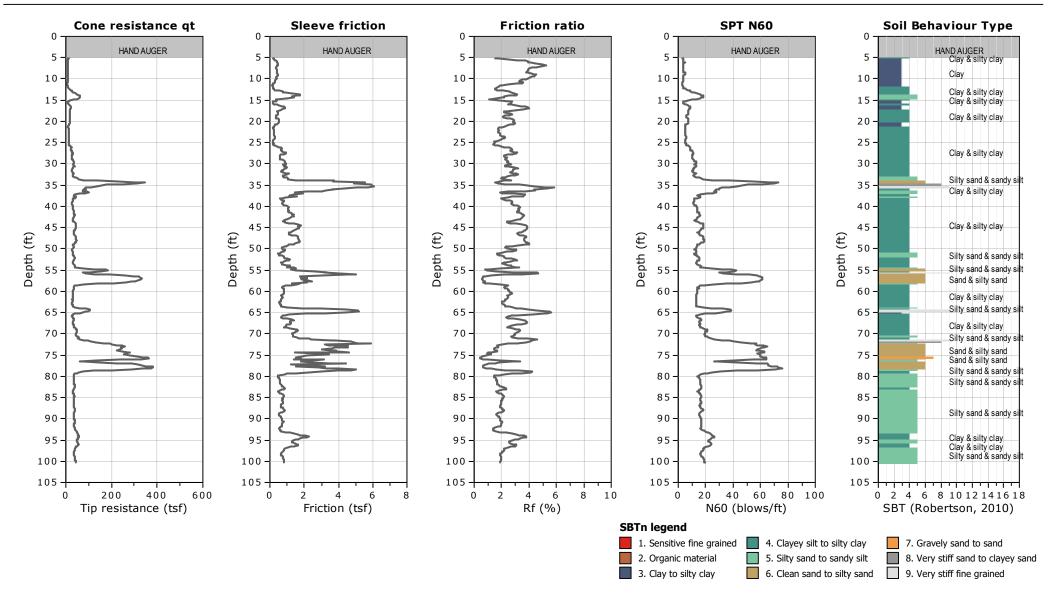





#### FIELD REP: NICK VAIANA Cone ID: GDC-89

Total depth: 50.36 ft, Date: 2/11/2022



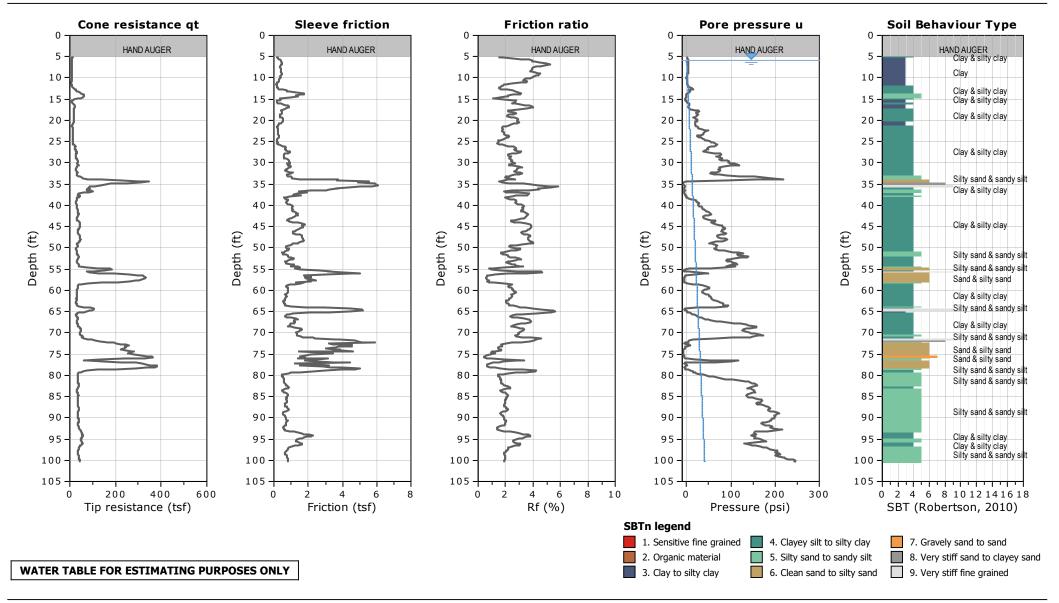





#### FIELD REP: NICK VAIANA Cone ID: GDC-89

Total depth: 100.39 ft, Date: 2/11/2022

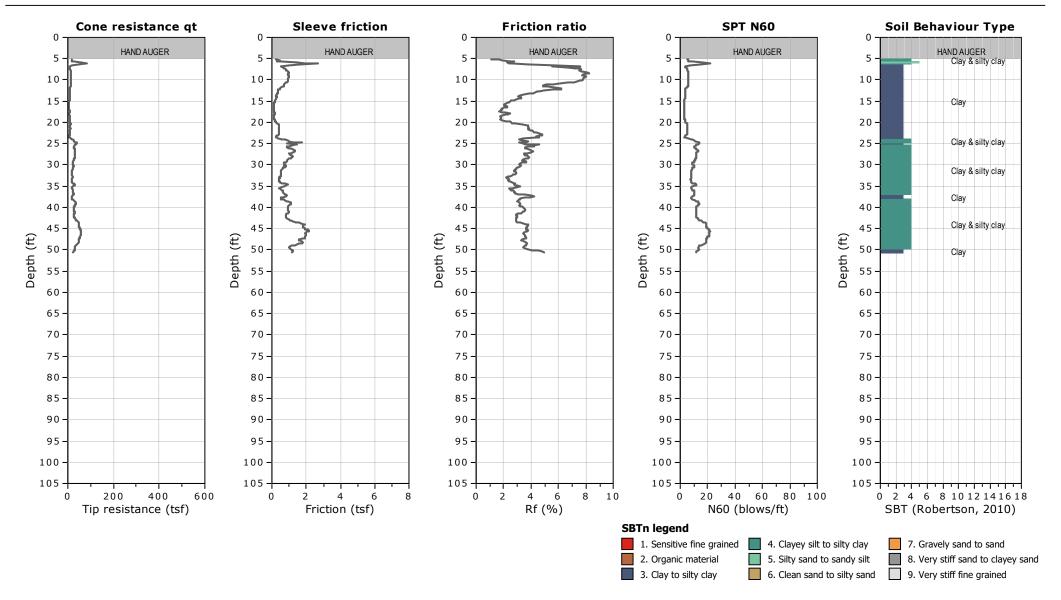







#### FIELD REP: NICK VAIANA Cone ID: GDC-89

Total depth: 100.39 ft, Date: 2/11/2022

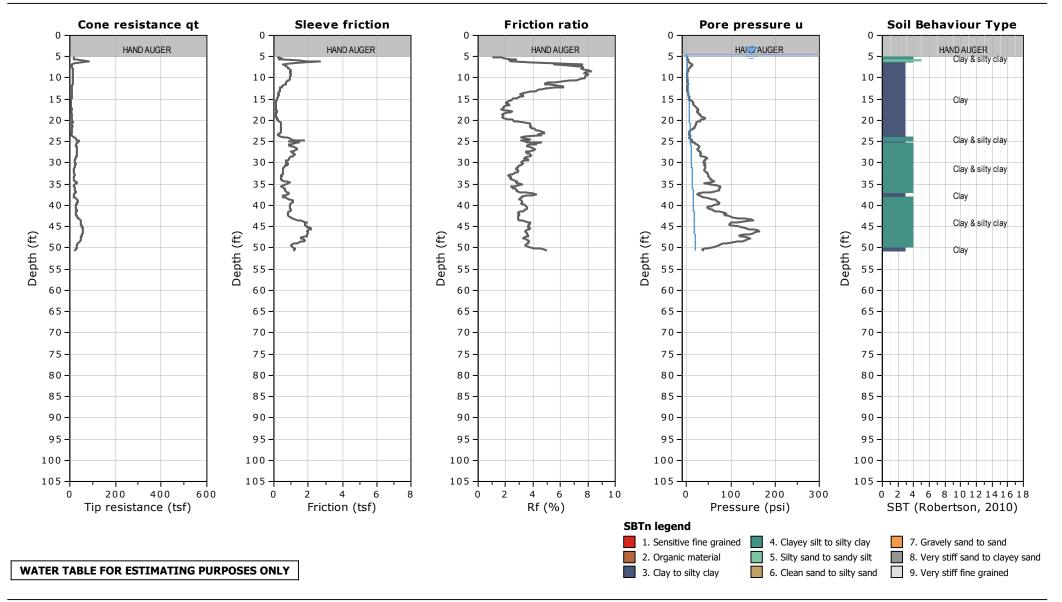







#### FIELD REP: NICK VAIANA Cone ID: GDC-89

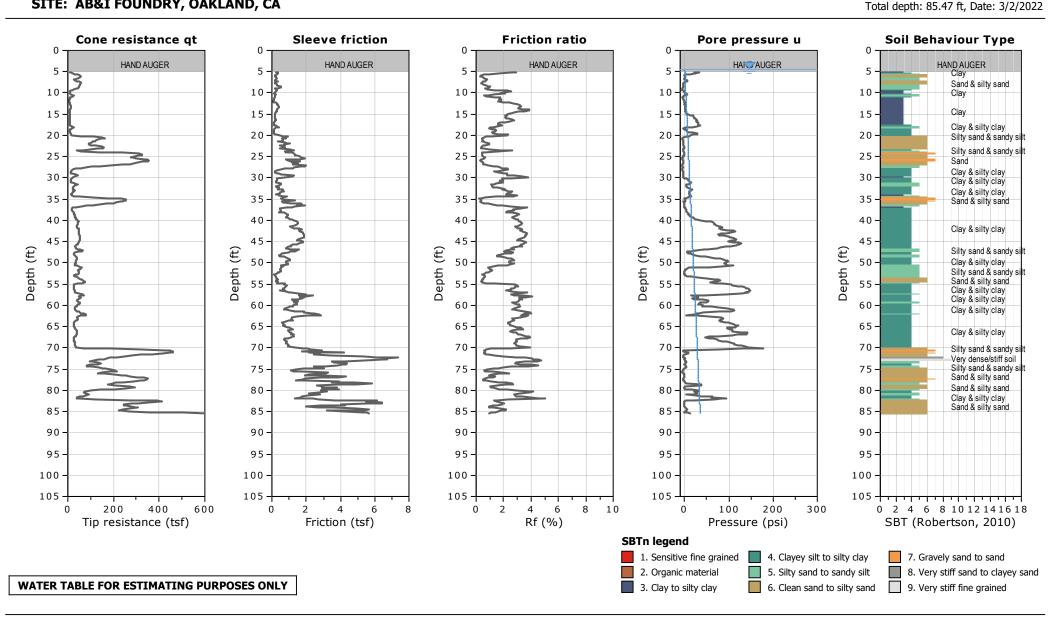
Total depth: 50.52 ft, Date: 2/11/2022






#### FIELD REP: NICK VAIANA Cone ID: GDC-89

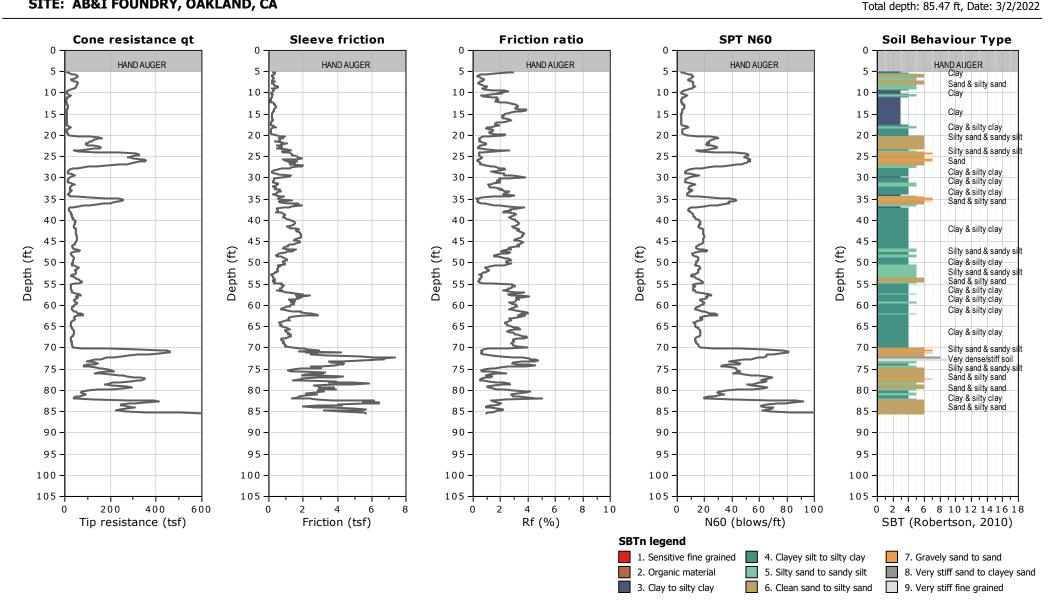
Total depth: 50.52 ft, Date: 2/11/2022







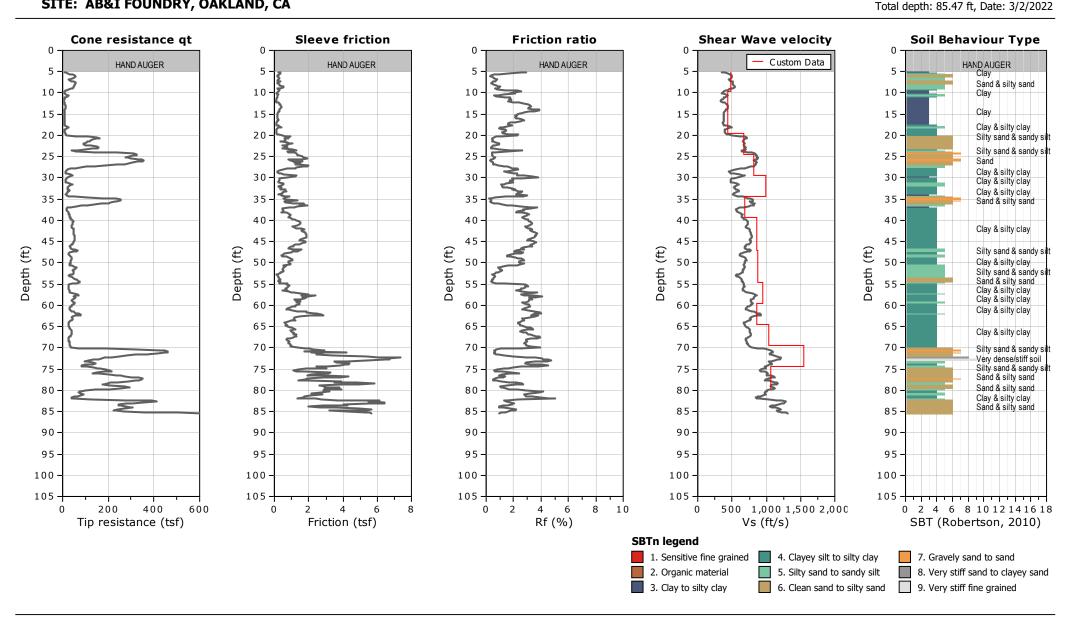

**FIELD REP:** 


Cone ID:





**FIELD REP:** 


Cone ID:





**FIELD REP:** 

Cone ID:



### Revised Site Conceptual Model & Data Gap Investigation Work Plan 7825 San Leandro Street, Oakland, California

### **APPENDIX E**

Standard Operating Procedures



Date: Prepared February 22, 2023

#### Subject: Standard Operating Procedure for Installation and Collection of Passive Soil Gas Samplers for Laboratory Analysis

#### Purpose

The purpose of this Standard Operating Procedure (SOP) is to establish guidelines for the installation and collection of passive soil gas (PSG) samplers using BESURE[™] sample collection kits. This SOP is applicable to PSG samplers installed into the shallow subsurface within the upper 3 feet below ground surface (bgs). Sampling procedures were developed in accordance with ASTM Standards D5314 and D7758 and in general accordance with the manufacturer's specifications.

#### Considerations

- The BESURE[™] sample collection kits provided by Beacon Environmental (Beacon) contain hydrophobic adsorbent cartridges which allow the samplers to be effective even in water-saturated conditions.
- Samples should not be collected if there has been a spill of a potentially hazardous chemical near, at or on the sample collection location.
- BESURE[™] sample collection kits should be inspected for damage prior to sampling and should be replaced as necessary.
- Sampling duration should be chosen to meet project specific objectives.

#### **Equipment and Materials**

- 1. Site-specific Health and Safety Plan (HASP) with Job Safety Analysis (JSAs);
- 2. Field notebook, field note form(s) and logs, Site maps, chain-of-custody (COC) forms, and custody seals;
- 3. Roto-hammer drill with 0.5-inch-diameter drill bit (48-inches long), and 1.5-inch diameter drill bit (12-inches long)
- 4. Aluminum foil
- 5. Disposable Nitrile sampling gloves;
- 6. Concrete for surface patching;
- 7. Screwdriver or chisel and hammer to remove temporary seal (where needed);
- 8. Ball-point pen (do not use Sharpie); and
- 9. BESURE[™] sample collection kits, including:
  - a. Beacon PSG Sampler (a rugged, borosilicate glass vial containing two sets of hydrophobic adsorbent cartridges);
  - b. Retrieval wire wrapped around sampler;
  - c. Solid Cap on the Sampler Vial;
  - d. Sampling Cap (a one-hole cap with a screen meshing insert);
  - e. Cap Storage Container;
  - f. 12-inch long pre-cleaned, aluminum protection sleeve pipe;
  - g. Wire cutters;
  - h. Pipe cutter;

Version 1: Prepared February 22, 2023 Page 2

- i. Screwdriver;
- j. Towel;
- k. Hammer;
- I. Tapping dowel;
- m. Chisel;
- n. Gauze cloth; and
- o. At least one trip blank per return shipment bag

#### Decontamination

To prevent cross-contamination, sampling equipment that comes in contact with potentially contaminated soil or soil gas during the installation or sampling procedures described below should not be reused before proper decontamination. Equipment that should not be reused during sampling generally includes anything that soil gas would pass through on its way to the samplers. This includes all components of the BESURE[™] sample collection kits. Disposable items such as sampling gloves will be changed after each use and discarded in an appropriate manner.

#### Procedures

#### 1. Shipment Received/Retrieved from Manufacturer

• Inventory field sampling kit, field equipment, and planned sampling locations before mobilization. Verify BESURE[™] sample collection kits custody seal is intact.

#### 2. PSG Sampler Installation

- Prior to subsurface work, perform private geophysical utility clearance, USA mark out, and submit DigAlert ticket in accordance with Roux's subsurface utility clearance protocols to clear the boring locations of potentially buried utilities.
- Mark and label sample locations as well as underground utilities or other features that may present a safety hazard or obstacle to gas movement.
- Clear vegetation or asphalt/concrete at each pre-determined survey point as needed and advance a boring to a depth of 1 foot bgs using a roto-hammer drill with a 1.5-inch diameter drill bit. The boring should extend beyond any surface aggregate material beneath asphalt/concrete. Advance borings to terminal depths of approximately 3 feet bgs using a 0.5-inch diameter drill bit.
- For locations covered in asphalt/concrete, insert the aluminum protection sleeve pipe into the upper 12 inches of the boring, while wearing nitrile gloves. Using the tapping dowel and hammer, push or tap the pipe into the hole so it rests approximately 1-inch bgs. As needed, use the pipe cutter to cut the pipe so it is flush with the ground surface.
  - Note: The sleeve pipe may also be used in soil covered locations to isolate the depth at which the sampler is detecting compounds in the soil gas.
- While wearing nitrile gloves, take the sampler vial and unwind the wrapped retrieval wire.
- Replace the white solid cap with the black, permeable sampling cap. Store the solid cap in the cap storage container.
- Prepare a 12-inch length of aluminum foil.
- Lower the Sampler with the screened-capped-end pointing down into the boring or metal pipe.

- For soil covered locations, form the aluminum foil into a ball and wrap the end of the retrieval wire around the foil ball, so it extends at least 1 inch out of the boring. Compress the foil ball into the top of the boring using the tapping dowel and hammer so it forms a seal and rests approximately 0.5-inches bgs.
  - Coil the wire and lay it flat on the ground surface. Collapse the soil above the plug, and place a whisker or flag for later sample recovery.
- For asphalt/concrete covered locations, hang the coil of wire over the top and outside of the pipe.
  - Plug the top of the hole with the aluminum foil. Using the tapping dowel and hammer, push the aluminum foil into the hole so it forms a seal and rests approximately 0.25-inches bgs.
  - Plug the top of the hole with a thin concrete patch (approximately 0.25-inches thick) to temporarily seal the Sampler in the ground.
- Record the field sample ID, sample number, date and time of placement, sampling hole depth, type of surfacing, and other relevant information on the COC.
- Repeat at next location.

#### 3. PSG Sampler Retrieval

- At the end of the sampling period (typically between 3 to 14 days depending on project specific objectives), return to the sample location.
- Use a screwdriver or hammer and chisel to remove the concrete patch, as needed. Using a screwdriver, remove the aluminum foil plug and retrieve the sampler.
- Holding the sampler upright, clean the sides of the sampler vial with the clean towel. Remove the sampling cap and cut the wire from the sampler vial with wire cutters. Clean the vial threads with the gauze cloth.
- Screw the solid cap on the sampler vial. With a ballpoint pen, record the sample number, corresponding to the sample location, on the cap's label. Do not use a Sharpie marker to record.
- Return the sampling cap to the sampling cap container.
- Place the sealed and labeled sampler vial in a sampler bag. Using a ballpoint pen, record the sample number on the sampler bag.
- Place the individually bagged and labeled sampler into the return shipment bag. Up to 30 samplers and 1 trip blank can be placed into 1 return shipment bag.
- Record the sampler location, date and time of retrieval, and other relevant information on the COC.
- Fill the borehole with granular bentonite, hydrated in place, and complete the surface to match surrounding conditions.
- Ship the BESURE[™] sampling collection kits and associated passive sampler vials with the chainof-custody form to the contracted laboratory for analysis via express delivery. Include any field

blanks within the sample kit during shipment. Affix a new custody seal on the kit and note the ID on the COC. *Note: No ice or preservatives are required for shipment.* 

#### 1. Sample Identification Verification and COCs

It is important to verify all samples are properly labeled and all information provided on the COC(s) is accurate before relinquishing samples to the laboratory. Specify desired analysis on the COC.

#### 2. Transportation and Shipment to Laboratory

Ensure all samples are securely packaged as initially received from the manufacturer. Samples should be protected from extreme temperatures during shipment. Obtain a copy of the signed COC once the samples have been relinquished to the laboratory.

Date: May 5, 2000

### 1.0 PURPOSE

The purpose of this Standard Operating Procedure (SOP) is to establish guidelines for the collection of soil samples for laboratory analysis. This SOP is applicable to soil samples collected from split-spoon samplers during drilling, hand auger samples, grab samples from stockpiled soils, surface samples, test pit samples, etc.

### 2.0 CONSIDERATIONS

Soil samples may be collected in either a random or biased manner. Random samples can be based on a grid system or statistical methodology. Biased samples can be collected in areas of visible impact or suspected source areas. Soil samples can be collected at the surface, shallow subsurface, or at depth. When samples are collected at depth the water content should be noted, since generally "soil sampling" is restricted to the unsaturated zone. Equipment selection will be determined by the depth of the sample to be collected. A thorough description of the sampling locations and proposed methods of sample collection should be included in the work plan.

Commonly, surface sampling refers to the collection of samples at a 0 to 6 inch depth interval. Certain regulatory agencies may define the depth interval of a surface sample differently, and this must be defined in the work plan. Collection of surface soil samples is most efficiently accomplished with the use of a stainless steel trowel or scoop. For samples at greater depths a decontaminated bucket auger or power auger may be needed to advance the hole to the point of sample collection. Another clean bucket auger should then be used to collect the sample. To collect samples at depths of greater than approximately six feet the use of a drill rig and split spoon samples will usually be necessary. In some situations, sample locations are accessed with the use of a backhoe.

### 3.0 MATERIALS/EQUIPMENT

- a. A work plan which outlines soil sampling requirements.
- b. Field notebook, field form(s), maps, chain-of-custody forms, and custody seals.
- c. Decontamination supplies (including: non-phosphate, laboratory grade detergent, buckets, brushes, potable water, distilled water, regulatory-required reagents, aluminum foil, plastic sheeting, etc.).
- d. Sampling device (split-spoon sampler, stainless steel hand auger, stainless steel trowel, etc.).
- e. Stainless steel spoons or spatulas.
- f. Disposable sampling gloves.

- g. Laboratory-supplied sample containers with labels.
- h. Cooler with blue or wet ice.
- i. Plastic sheeting.
- j. Black pen and indelible marker.
- k. Zip-lock bags and packing material.
- 1. Tape measure.
- m. Paper towels or clean rags.
- n. Masking and packing tape.
- o. Overnight (express) mail forms.

### 4.0 DECONTAMINATION

All reusable sampling equipment will be thoroughly cleaned according to the decontamination SOP. Where possible, thoroughly pre-cleaned and wrapped sampling equipment should be used and dedicated to individual sampling locations. Disposable items such as sampling gloves, aluminum foil, and plastic sheeting will be changed after each use and discarded in an appropriate manner.

#### 5.0 PROCEDURE

- 5.1 Prior to collecting soil samples, ensure that all sampling equipment has been thoroughly cleaned according to the decontamination SOP. If samples are to be collected at depth, then the boring must be advanced with thoroughly cleaned equipment to the desired sampling horizon and a different thoroughly cleaned sampler must be used to collect the sample.
- 5.2 Using disposable gloves and a pre-cleaned, stainless steel spatula or spoon, extract the soil sample from the sampler, measure the recovery, and separate the wash from the true sample. Where allowed by regulatory agency(ies), disposable plastic spoons may be used.
- 5.3 Place the sample in a laboratory-supplied, pre-cleaned sample container. This should be done as quickly as possible and this is especially important when sampling for volatile organic compounds (VOCs). Samples to be analyzed for VOCs must be collected prior to other constituents.
- 5.4 The sample container will be labeled with appropriate information such as, client name, site location, sample identification (location, depth, etc.), date and time of collection, and sampler's initials.

- 5.5 Using the remaining portion of soil from the sampler, log the sample in detail and record sediment characteristics (color, odor, moisture, texture, density, consistency, organic content, layering, grain size, etc.).
- 5.6 If soil samples are to be composited in the field, then equal portions from selected locations will be placed on a clean plastic sheet and homogenized. Alternately, several samples may be submitted to the laboratory for compositing by weight. The method used is dependent upon regulatory requirements. Specific compositing procedures shall be approved by the appropriate regulatory agency and described in the work plan. Samples to be analyzed for VOCs will not be composited unless required by a regulatory agency.
- 5.7 After the sample has been collected, labeled, and logged in detail, it is placed in a zip-lock bag and stored in a cooler at 4°C.
- 5.8 A chain-of-custody form is completed for all samples collected. One copy is retained and two are sent with the samples in a zip-lock bag to the laboratory. A custody seal is placed on the cooler prior to shipment.
- 5.9 Samples collected from Monday to Friday are to be delivered to the laboratory within 24 hours of collection. If Saturday delivery is unavailable, samples collected on Friday must be delivered by Monday morning. Check the work plan to determine if any analytes require a shorter delivery time.
- 5.10 The field notebook and appropriate forms should include, but not be limited to the following: client name, site location, sample location, sample depth, sample identification, date and time collected, sampler's name, method of sample collection, number and type of containers, geologic description of material, description of decontamination procedures, etc. A site map should be prepared with exact measurements to each sample location in case follow-up sampling is necessary.
- 5.11 All reusable sampling equipment must be thoroughly cleaned in accordance with the decontamination SOP. Following the final decontamination (after all samples are collected) the sampling equipment is wrapped in aluminum foil. Discard any gloves, foil, plastic, etc. in an appropriate manner that is consistent with site conditions.

### END OF PROCEDURE



Date: Version 3: Prepared October 2022

# Subject: Standard Operating Procedure for Collection of Soil Vapor Samples for Laboratory Analysis Using a Helium Shroud

#### Purpose

The purpose of this Standard Operating Procedure (SOP) is to establish guidelines for the collection of soil vapor samples into SUMMA[®] canisters using a helium shroud. This SOP is applicable to soil vapor sampling from vapor probes installed into the subsurface. Sampling procedures were developed in accordance with the Department of Toxic Substances Control (DTSC) 2015 Soil Gas Advisory.

#### Considerations

- Soil vapor samples should not be collected during or within the 5 days following a significant rain event (defined as 0.25-inches of rainfall or greater during a 24-hour period).
- Soil vapor sampling may occur within 5 days of a significant rain event in areas beneath highintegrity pavement where water infiltration has not occurred.
- Soil vapor samples should not be collected in areas where standing water is observed or if water is visible in the probe tubing.
- Samples should not be collected if there has been a spill of a potentially hazardous chemical near, at or on the sample port.
- Probe tubing, termination valves, well boxes, and well box covers should be inspected for cracks or damage prior to sampling and should be replaced as necessary.

#### **Equipment and Materials**

- 1. Site-specific Health and Safety Plan (HASP) with Job Safety Analysis (JSAs);
- 2. Field notebook, field note form(s) and logs, Site maps, boring logs, purge-volume calculation sheets, chain-of-custody (COC) forms, and custody seals;
- 3. 1-liter batch-certified SUMMA[®] canisters with 200 milliliters per minute (mL/min) flow controllers (check project specific requirements for sample container sizes);
- 4. SUMMA[®] fittings and attachments provided by laboratory: threaded Swagelok nuts, ferrules, manifolds/flow controllers, three way vales, and "T" splitter(s) if collecting duplicate samples;
- 5. Sample train components: 3-way and 1-way stopcock valves, rigid ¼-inch Nylaflow[®] and flexible Tygon[®] or silicone tubing, and Teflon[®] tape;
- 6. Tubing snips/scissors;
- 7. Two 9/16-inch crescent wrenches to tighten and loosen SUMMA® connections;
- 8. 9/16-inch and 1/2-inch socket wrenches to open/close well boxes (if applicable);
- 9. Disposable Nitrile sampling gloves;
- 10. Resealable Ziplock bag and clean rag;
- 11. Helium bottle & shroud for use as a leak check compound;
- 12. Helium detectors;
- 13. Purge SUMMA[®] canister(s) with 200 mL/min flow controller or 60 mL syringe with 3-way valve;

- 14. Connection lines for helium detectors, helium bottle, and purge cannister;
- 15. Ball point pen (do not use Sharpies);
- 16. Stop watch or timer; and
- 17. QT Vacuum gage.

#### Decontamination

To prevent cross-contamination, sampling equipment that comes in contact with soil vapor during the sample collection step (see Step 6 below) should not be reused to collect soil vapor samples from different probes. Equipment that should not be reused during sampling generally includes anything that soil vapor would pass through on its way to the sample canisters. This includes manifolds/flow controllers, threaded Swagelok nuts, ferrules, tubing, 1-way and 3-way valves.

Portions of the sample train that are "downstream" of the sample canister, may be reused between samples as these portions of the sample train are not used during sample collection. This includes the purge pump, syringe, pressure gauge and the valves and tubing that attach these components.

Disposable items such as sampling gloves, used tubing, and valves will be changed after each use and discarded in an appropriate manner.

#### Procedures

#### 1. Shipment Received/Retrieved from Laboratory

Ensure all requested SUMMA[®] canisters and associated helium shroud equipment are included in shipment. Verify each canister has a minimum vacuum of 25-inches of mercury (in Hg) and the open/close valves are turned to the "closed" position. Make sure the fittings on the canisters and the manifolds/flow controllers are compatible.

#### 2. Equilibration Period and Purge Volume Calculations

- Prior to purging, ensure the appropriate equilibration period has been observed after probe installation (for newly installed probes).
- A default of three purge volumes (PVs) should be extracted from the probe to remove stagnant air.
- Calculate the PV based on the probe construction specifications using the PV calculation worksheet.

#### Note:

For vapor probes installed vertically, one PV includes the following:

- the volume of the sand pack surrounding the probe tip,
- the void space of the dry bentonite in the annular space above and/or below the sand pack, and
- the internal volume of the probe and sample train tubing and the probe tip.

For vapor probes installed horizontally underneath a building as part of the VIMS, one PV includes:

- the internal volume of the probe and sample train tubing, and
- the probe tip.
- .

#### 3. Conduct Shut-in Test

Insert well line to the larger diameter tubing on the well side of the manifold with the 3-way line in the purge position:

- Connect SUMMA[®] cannister tubing to 3-way valve (e.g., closed end) and conduct shut-in test for one minute or longer per DTSC guidance 4.2.1
- After a successful shut-in test, the gauge level should not be altered. The vacuum gauge should be calibrated and sensitive enough to indicate a water pressure change of 0.5 inches.
- Connect the ¹/₄" tube from the well to the threaded end of the flow controller with the swage nut compression fitting using a 9/16" wrench.

Use the QT Vacuum gauge to check the initial vacuum of the sample canister. An acceptable sample canister should start at -30"Hg / - 30psi.

#### 4. Set Up Enthalpy Helium Shroud Kit

Use the 3 provided lines to make the following 4 connections:

- The end marked "Helium Supply" to the helium bottle using a 9/16" wrench.
- The end marked "Helium detector inlet" to the upper line on the flow-through helium detector by twisting the end of the line on firmly to the lure lock.
- The end marked "Helium detector outlet" to the lower line on the flow-through helium detector by twisting the end of the line on firmly. Do not cut these lines, do not disassemble lures.
- The end marked "To flow controller while purging" to the flow controller using the quick-connectors.

#### 5. Preparing the Shroud and Ring

- Place the end of the line currently attached to the helium bottle (marked "Open End Under Shroud") resting close to the flow controller.
- Place the ambient helium detector close to the flow controller.
- Checking that the 3 way is set to purge, connect the sampling canister to your flow controller.
- Use a chain to form a ring large enough to enclose the flow controller, well head, ambient helium detector, open end of the helium line, and sample canister.
- Adjust the chain so that it conforms to your terrain for best performance. Make sure that there are no gaps in the circumference of the shroud edges. Lines going into and out of the ring should pass under the chain.
- Position the helium bottle, flow-through helium detector, and 6L purge canister outside of the shroud. Make sure that the end of the line marked "Purge Can" will easily reach the quick connect fitting on the top of the can. Do not attach the line to the can.
- Per section 4.2.3 of DTSC guidance a default of 3 purge volumes should be used in order to make sure stagnant air is removed from the well, ensuring that the sample is representative. The lab can provide a calculation spreadsheet to account for well conditions if you do not have one.
- Note the approximate layout of your system and remove the chain.

- Place the included plastic clear tarp flat over the components that will be inside of the ring.
- Replace the chain, creating the shroud pocket. Pull tight to conserve helium and minimize area of shroud atmosphere.

#### 6. Purging and Leak Check

- Turn each helium detector on by moving the silver toggle switches to the up position. The LCD display will turn on immediately. Allow the readings on the meters to settle to an accurate reading for about 10 seconds after turning them on. A small amount of fluctuation at rest is normal.
- Open and close the valve on top of the helium bottle momentarily to introduce a small blast of helium into the shroud. It should take no more than 3 blasts to achieve 20%.
- Observe the reading on the helium detector inside of the shroud. It will start responding immediately to the helium. Wait a few seconds until the reading levels out to get a stable reading.
- Helium will slowly escape from the shroud over time, especially in windy or uneven topography of the terrain (i.e. tall grass). This is normal. While using the system, add small amounts of helium as needed to maintain the ideal 20-40% helium concentration.
- With the shroud charged with the 20-40% charged with helium, connect the hooked end of the line (labeled "Purge Can") to the purge can with the quick-connect fittings. This will begin purging immediately.
- Extract 3 PVs from the sampling system (as determined in Step 2). Note the vacuum readings during purging.
- Purge time (seconds) =  $\begin{bmatrix} \frac{3 \text{ PV (mL)}}{200 \left(\frac{\text{mL}}{\text{min}}\right)} \end{bmatrix} x 60 \text{ seconds/min}$
- Watch your flow through helium detector closely, if there is readings immediately then there is a poor connection within the shroud.
- If there are readings after 1-2 well volumes this is indicative of poor seal at the well head resulting in helium being sucked down to sample point and back up through the system. In this instance re-evaluate seal of well head.
- Monitor both helium detectors for the duration of the purging process. Introduce more helium if the inner detector falls below 20%.
- After the determined purge time has elapsed, detach the line from the purge cannister to stop purging. You are able to do a quantitative check of the volume purged by viewing the gauge. For every 5" Hg of vacuum decrease, 1 L vapor has been collected within the Summa canister. A single purge can perform 30-40 minutes of continuous purging, and can be moved from well to well without risk of cross contamination.

#### 7. Sample Collection

• Turn the valve to sample without removing the shroud. Sampling has begun. Be sure to monitor helium as well as down hole gauge. If down hole gauge exceeds <7" Hg you are dealing with a tight soil formation and may not be able to collect a full liter. One should also expect longer sampling times in these field conditions.

- Monitor the right-hand gauge of the flow controller, which is now displaying the vacuum in the sample canister.
- Detach the canister from the flow controller when the right-hand gauge reading has fallen to about 5" Hg.
- The sample is complete. The whole helium system may be moved to the next well to complete. A clean flow controller must be used at each well. Reminder to turn off detectors when not monitoring.

#### 8. Sample Identification Verification and COCs

It is important to verify all samples are properly labeled and all information provided on the COC(s) is accurate before relinquishing samples to the laboratory. Specify desired analysis on the COC, including the helium leak check compound (or other designated compound) as a separate analysis.

#### 9. Transportation and Shipment to Laboratory

Ensure all samples are securely packaged as initially received from the laboratory. All manifolds/flow controllers should be removed from the SUMMA[®] canisters and dust caps should be replaced prior to shipment. Samples should be protected from extreme temperatures during shipment. Obtain a copy of the signed COC once the samples have been relinquished to the laboratory.

### STANDARD OPERATING PROCEDURE 4.2 FOR MEASURING WATER LEVELS USING AN ELECTRONIC SOUNDING DEVICE (M-SCOPE)

Date: May 5, 2000

#### 1.0 PURPOSE

The purpose for this standard operating procedure (SOP) is to establish the guidelines for using m-scopes. A m-scope is an electronic sounding device used to measure the depth to ground water below an established (surveyed) measuring point (MP). Measuring the depth to water (DTW) below the surveyed MP provides information for calculating ground-water elevations needed to construct ground-water elevation maps and determine the direction of ground-water flow.

M-scopes can be less accurate than a steel tape because the wire can kink, measurement increment marks can shift, and the tip may have been cut off and replaced without proper documentation. Thus, it is mandatory that a m-scope be calibrated before use.

#### 2.0 DECONTAMINATION

The m-scope must be pre-cleaned (decontaminated) using a non-phosphate, laboratorygrade solution and rinsed with copious amounts of distilled or deionized water. This process is repeated before each measurement and following the final measurement.

#### 3.0 CALIBRATION

The m-scope must be calibrated before being used to measure water levels. Calibration is accomplished by measuring the water level with the m-scope followed by a measurement using a steel tape. This dual measurement procedure is continued until the individual is confident that measurements taken using both devices are similar and the m-scope is reliable. The calibration procedure is documented in the field notebook or on an appropriate field form, and initialed and dated.

#### 4.0 PROCEDURE

- 4.1 If the well is not vented, then remove the cap and wait several minutes for the water level to equilibrate. Take several measurements to ensure that the water level measured is in equilibrium with the aquifer (i.e., not changing substantially).
- 4.2 The manufacturer's model must be noted because some have switches, lights, beepers, or a combination of the above.
- 4.3 The 1-foot or 5-foot marked intervals on the electrical line must be checked to ensure that they have not shifted, and the bottom of the probe has not been cut. Check on a periodic basis that the cord has not kinked.
- 4.4 The water-level measurement is taken by lowering the probe into the well until the instrument-specific detection method (e.g., light, beeper, or both) is activated by contacting the water.

- 4.5 The electrical line is held at the MP and, using a ruler (e.g., carpenter's folding ruler) or an engineer's scale, the distance from the "held" point to the nearest marked interval is measured. The distance measured is added to, or subtracted from, the marked interval reading. The result is the DTW.
- 4.6 Measurements will be taken accurately and to the nearest 0.01 foot.
- 4.7 After measuring all wells in an area, always re-measure at least one well, preferably the first well measured, to see if the static water level has changed (e.g., due to pumping in the area, tidal effects, etc.). If a significant change has occurred, it may be necessary to re-measure other wells.
- 4.8 If there are previous water-level measurements available for the wells, then have these data available to compare the measurements with those just taken. Use these data to see if water levels are similar or if they have changed. If water levels have changed, then check if the changes are consistent (i.e., all up or all down) and make sense.
- 4.9 Water-level elevations are calculated by subtracting the DTW from the MP and a water-elevation map is constructed (contoured) on a well location map. This also provides a check to evaluate if the water levels make sense (or anomalies are evidenced). Re-measure the well(s) where anomalies are found as a check on the initial measurement(s).
- 4.10 If anomalies persist or water-level trends are different from the historical database, then check to see if hydrogeologic conditions and/or stresses have changed (e.g., discharge areas, pumping and/or injection wells, etc.).
- 4.11 All pertinent data will be documented in the field notebook, and initialed and dated.

### END OF PROCEDURE

#### Date: May 5, 2000

#### 1.0 PURPOSE

The purpose for this standard operating procedure (SOP) is to establish the guidelines for purging a well prior to the collection of a ground-water sample. Purging (evacuating) a well involves the removal of the standing column of water in the well to allow "fresh" (representative) formation water to enter the well. Two conventionally used methods for well purging include: 1) discharge of a specified number of casing volumes of water (which is more commonly used); and 2) pumping until specific indicator parameters (e.g., specific conductance, pH, temperature) stabilize. Wells must be purged prior to sampling to ensure the collection of representative formation ground water for water-quality analysis.

For accepted, existing sampling and analysis programs, the same purging method will be used each time to maintain consistency. For new sampling and analysis programs, the basis for the purging technique(s) will be site-specific field conditions, client input, the experience of Roux Associates, Inc. and regulatory agency(ies) guidelines (e.g., some states permit purging a low-yield well to dryness while others insist that some water remains in the well).

#### 2.0 EQUIPMENT AND MATERIALS

- 2.1 The following equipment may be needed to purge a monitoring well before sampling:
  - a. Bailers.
  - b. Centrifugal pumps.
  - c. Electrical submersible pumps.
  - d. Peristaltic pumps.
  - e. Positive gas-displacement devices.
  - f. Bladder pumps.
  - g. Hand-operated diaphragm or bilge pump(s).
  - h. TeflonTM tape, electrical tape.
  - i. Tape measure (stainless steel, steel, fiberglass) with 0.01-foot measurement increments and chalk (e.g., blue carpenter's) or m-scope.
  - j. Appropriate discharge hose and valves.

- k. Appropriate discharge tubing (e.g., polypropylene) if using a peristaltic pump.
- 1. Appropriate compressed gas if using bladder-type or gas-displacement device.
- m. Extension cord(s) or portable generator (and fuel) if using an electric submersible pump.
- n. Non-absorbent cord (e.g., polypropylene, etc.), cotton (absorbent) cord.
- o. Tripod(s).
- p. Water Well Handbook.
- q. Explosimeter.
- r. Flow meter.
- 2.2 Bailers or centrifugal pumps are recommended for shallow, small diameter monitoring wells. For deep wells, or large diameter wells, a submersible pump is recommended.

### 3.0 DECONTAMINATION

Each piece of equipment that is used to evacuate wells (e.g., bailers, pumps, hoses) will be decontaminated thoroughly prior to the introduction of the equipment into the well and prior to leaving the site. Additionally, disposable items (e.g., cord, tubing) will be changed between each well purged and discarded in an appropriate manner.

#### 4.0 PROCEDURE

- 4.1 The depth to water (DTW) is measured and subtracted from the sounded (total) depth of the well to calculate the length of the column of standing water in the well (in feet).
- 4.2 The volume of the standing water in the well is calculated by multiplying the length of standing water by a coefficient which equates the diameter of the well to gallons per linear foot. (Refer to the attached table from the Water Well Handbook for the coefficient or use the following equation [V=(7.48 gal/ft3)(r2h), where V is volume of water in gallons, r is the radius of the well casing in feet, and h is the height of the water column in the well in feet].)
- 4.3 If purging is performed by evacuating a specified number of casing volumes, then three to five volumes are purged (typical regulatory agency requirement).
- 4.4 If wells are screened in low permeability formations, then the well may go dry prior to removing the specified volume of water. If the recovery rate is fairly rapid and

time allows, then remove more than one casing volume; otherwise, the evacuation of one casing volume may suffice. (Refer to the site sampling and analysis plan [SAP] for details of purging a low-yield well.)

- 4.5 Evacuation will occur from the top of the water column in the well to ensure that "fresh" formation water enters the bottom of the well through the screen, moves up as standing water is removed from the top, and all standing water is removed (i.e., only representative formation water is in the well).
- 4.6 The volume of water purged from the well must be measured and can be calculated directly by discharging into containers of known volume or can be calculated by multiplying rate of flow by time.
- 4.7 If a submersible or centrifugal pump is used, then the intake is set just below the dynamic (pumping) water level in the well. The rate of flow in gallons per minute (gpm) can be measured using a calibrated bucket (e.g., 5-gallon) if the rate is relatively low, or a 55-gallon drum if the rate is relatively high, and a watch capable of measuring time in second intervals. A precalibrated flow meter may also be used if available.
- 4.8 After the specified number of casing volumes have been evacuated from the well, the pump intake is lifted slowly until it breaks suction to confirm that any standing water above the intake has been purged.
- 4.9 If a bailer is used, then the bailer is lowered only deep enough to remove water from the top of the water column and a 5-gallon bucket is used to measure the volume of water evacuated.
- 4.10 If purging is not executed by evacuating a specified number of well volumes, then purging is performed by pumping or bailing the well until specific indicator parameters (e.g., specific conductance, pH, temperature) stabilize. The volume of water removed is documented on an appropriate field form or in the field notebook.
- 4.11 Water purged from the well will be disposed of in accordance with the appropriate method outlined in the site SAP.
- 4.12 If historic site data indicate that explosive gases could be present and accumulate in the well, then an explosimeter will be used to check vapor concentrations in wells at the site prior to beginning the purging procedure. Vapor concentrations in a well that exceed the 25 percent lower explosive limit (LEL) will require specific precautionary measures to allow purging the well without danger of explosion or fire (e.g., use of cotton cord for bailers or lowering pumping devices, non-electric powered pumps). These conditions will be addressed in the site health and safety plan (HASP) and/or SAP.

#### END OF PROCEDURE

Date: May 5, 2000

#### 1.0 PURPOSE

The purpose of this standard operating procedure (SOP) is to establish guidelines for the sampling of ground-water monitoring wells for dissolved constituents. As part of the SOP for the sampling of ground-water monitoring wells, sample collection equipment and devices must be considered, and equipment decontamination and pre-sampling procedures (e.g., measuring water levels, sounding wells, and purging wells) must be implemented. Sampling objectives must be firmly established in the work plan before considering the above.

Valid water-chemistry data are integral to a hydrogeologic investigation that characterizes ground-water quality conditions. Water-quality data are used to evaluate both current and historic aquifer chemistry conditions, as well as to estimate future conditions (e.g., trends, migration pathways). Water-quality data can be used to construct ground-water quality maps to illustrate chemical conditions within the flow system, to generate water-quality plots to depict conditions with time and trends, and to perform statistical analyses to quantify data variability, trends, and cleanup levels.

#### 2.0 EQUIPMENT AND MATERIALS

- 2.1 In order to sample ground water from monitoring wells, specific equipment and materials are required. The equipment and materials list may include, but not necessarily be limited to, the following:
  - a. Bailers (TeflonTM or stainless steel).
  - b. Pumps (centrifugal, peristaltic, bladder, electric submersible, bilge, handoperated diaphragm, etc.).
  - c. Gas-displacement device(s).
  - d. Air-lift device(s).
  - e. TeflonTM tape, electrical tape.
  - f. Appropriate discharge hose.
  - g. Appropriate discharge tubing (e.g., polypropylene, teflon, etc.) if using a peristaltic pump.
  - h. Appropriate compressed gas if using bladder-type or gas-displacement device.

- i. Portable generator and gasoline or alternate power supply if using an electric submersible pump.
- j. Non-absorbent cord (e.g., polypropylene, etc.).
- k. Plastic sheeting.
- 1. Tape measure (stainless steel, steel, fiberglass) with 0.01-foot measurement increments and chalk (blue carpenter's).
- m. Electronic water-level indicators (e.g., m-scope, etc.) or electric waterlevel/product level indicators.
- n. Non-phosphate, laboratory-grade detergent.
- o. Distilled/Deionized water.
- p. Potable water.
- q. Paper towels, clean rags.
- r. Roux Associates' field forms (e.g., daily log, well inspection checklist, sampling, etc.) and field notebook.
- s. Well location and site map.
- t. Well keys.
- u. Stop watch, digital watch with second increments, or watch with a second hand.
- v. Water Well Handbook.
- w. Calculator.
- x. Black pen and water-proof marker.
- y. Tools (e.g., pipe wrenches, screwdrivers, hammer, pliers, flashlight, pen knife, etc.).
- z. Appropriate health and safety equipment, as specified in the site health and safety plan (HASP).
- aa. pH meter(s) and buffers.
- bb. Conductivity meter(s) and standards.

- cc. Thermometer(s).
- dd. Extra batteries (meters, thermometers, flashlight).
- ee. Filtration apparatus, filters, pre-filters.
- ff. Plasticware (e.g., premeasured buckets, beakers, flasks, funnels).
- gg. Disposable gloves.
- hh. Water jugs.
- ii. Laboratory-supplied sample containers with labels.
- jj. Cooler(s).
- kk. Ice (wet, blue packs).
- ll. Masking, duct, and packing tape.
- mm. Chain-of-custody form(s) and custody seal(s).
- nn. Site sampling and analysis plan (SAP).
- oo. Site health and safety plan (HASP).
- pp. Packing material (e.g., bubble wrap)
- qq. "Zip-lock" plastic bags.
- rr. Overnight (express) mail forms.

#### 3.0 DECONTAMINATION

- 3.1 Make sure all equipment is decontaminated and cleaned before use (refer to the SOP for Decontamination of Field Equipment for detailed decontamination methods, summaries for bailers and pumps are provided below). Use new, clean materials when decontamination is not appropriate (e.g., non-absorbent cord, disposable gloves). Document, and initial and date the decontamination procedures on the appropriate field form and in the field notebook.
  - a. Decontaminate a bailer by: 1) wearing disposable gloves, 2) disassembling (if appropriate) and scrubbing in a non-phosphate, laboratory-grade detergent and distilled/deionized water solution, and 3) rinsing first with potable water and then distilled/deionized water.

- b. Decontaminate a pump by: 1) wearing disposable gloves, 2) flushing the pump and discharge hose (if not disposable) first with a non-phosphate, laboratory-grade detergent and potable water solution in an appropriate container (clean bucket, garbage can, or 55-gallon drum) and then with distilled/deionized water or potable water, and 3) wiping pump-related equipment (e.g., electrical lines, cables, discharge hose) first with a clean cloth and detergent solution and then rinsing or wiping with a clean cloth and distilled/deionized water or potable water.
- 3.2 Note that the decontamination procedures for bailers and pumps are the minimum that must be performed. Check the work plan to determine if chemicals specified by individual state regulatory agencies must also be used for decontamination procedures (e.g., hexane, nitric acid, acetone, isopropanol, etc.).

#### 4.0 CALIBRATION OF FIELD ANALYSIS EQUIPMENT

Calibrate field analysis equipment before use (e.g., thermometers, pH and conductivity meters, etc.). Refer to the specific SOP for field analysis for each respective piece of equipment. Document, and initial and date the calibration procedures on the appropriate field form, in the field notebook, and in the calibration log book.

#### 5.0 PROCEDURE

- 5.1 Document, and initial and date well identification, pre-sampling information, and problems encountered on the appropriate field form and in the field notebook as needed.
- 5.2 Inspect the protective casing of the well and the well casing, and note any items of concern such as a missing lock, or bent or damaged casing(s).
- 5.3 Place plastic sheeting around the well to protect sampling equipment from potential cross contamination.
- 5.4 Remove the well cap or plug and, if necessary, clean the top of the well off with a clean rag. Place the cap or plug on the plastic sheeting. If the well is not vented, allow several minutes for the water level in the well to equilibrate. If fumes or gases are present, then diagnose these with the proper safety equipment. Never inhale the vapors.
- 5.5 Measure the depth to water (DTW) from the measuring point (MP) on the well using a steel tape and chalk or an electronic sounding device (m-scope). Refer to the specific SOPs for details regarding the use of a steel tape or a m-scope for measuring water levels. Calculate the water-level elevation. Document, and initial and date the information on the appropriate field form and in the field notebook.

- 5.6 Measuring the total depth of the well from the MP with a weighted steel tape. Calculate and record the volume of standing water in the well casing on the appropriate field form and in the field notebook.
- 5.7 Decontaminate the equipment used to measure the water level and sound the well with a non-phosphate, laboratory-grade detergent solution followed by a distilled/deionized water rinse.
- 5.8 Purge the well prior to sampling (refer to the SOP for Purging a Well). The well should be pumped or bailed to remove the volume of water specified in the work plan. Usually three to five casing volumes are removed if the recharge rate is adequate to accomplish this within a reasonable amount of time.

If the formation cannot produce enough water to sustain purging, then one of two options must be followed. These include: 1) pumping or bailing the well dry, or 2) pumping or bailing the well to "near-dry" conditions (i.e., leaving some water in the well). The option employed must be specified in the work plan and be in accordance with regulatory requirements.

If the well is purged dry, then all the standing water has been removed and upon recovery the well is ready for sampling. However, depending on the rate of recovery and the time needed to complete the sampling round, one of the following procedures may have to be implemented: 1) the well may have to be sampled over a period of more than one day; 2) the well may not yield enough water to collect a complete suite of samples and only select (most important) samples will be collected; or 3) the well may not recover which will preclude sampling. Regardless of the option that must be followed, the sampling procedure must be fully documented. When preparing to conduct a sampling round, review drilling, development and previous sampling information (if available) to identify low-yielding wells in order to purge them first, and potentially allow time for the well to recover for sampling.

- 5.9 Record the physical appearance of the water (i.e., color, turbidity, odor, etc.) on the appropriate field form and in the field notebook, as it is purged. Note any changes that occur during purging.
- 5.10 If a bailer is used to collect the sample, then:
  - a. Flush the decontaminated bailer three times with distilled/deionized water.
  - b. Tie the non-absorbent cord (polypropylene) to the bailer with a secure knot and then tie the free end of the bailer cord to the protective casing or, if possible, some nearby structure to prevent losing the bailer and cord down the well.

- c. Lower the bailer slowly down the well and into the water column to minimize disturbance of the water surface. If a bottom-filling bailer is used, then do not submerge the top of the bailer; however, if a top-filling bailer is used, then submerge the bailer several feet below the water surface.
- d. Remove and properly discard one bailer volume from the well to rinse the bailer with well water before sampling. Again, lower the bailer slowly down the well to the appropriate depth depending on the bailer type (as discussed above in 5.11 c). When removing the bailer from the well, do not allow the bailer cord to rest on the ground but coil it on the protective plastic sheeting placed around the well. Certain regulatory agencies require that the first bailer volume collected be utilized for the samples.
- 5.11 If a pump is used to collect the sample, then use the same pump used to purge the well and, if need be, reduce the discharge rate to facilitate filling sample containers and to avoid problems that can occur while filling sample containers (as listed in Number 5.14, below). Alternately, the purge pump may be removed and a thoroughly decontaminated bailer can be used to collect the sample.
- 5.12 Remove each appropriate container's cap only when ready to fill each with the water sample, and then replace and secure the cap immediately.
- 5.13 Fill each appropriate, pre-labeled sample container carefully and cautiously to prevent: 1) agitating or creating turbulence; 2) breaking the container; 3) entry of, or contact with, any other medium; and 4) spilling/splashing the sample and exposing the sampling team to contaminated water. Immediately place the filled sample container in a ice-filled (wet ice or blue pack) cooler for storage. If wet ice is used it is recommended that it be repackaged in zip-lock bags to help keep the cooler dry and the sample labels secure. Check the work plan as to whether wet ice or blue packs are specified for cooling the samples because certain regulatory agencies may specify the use of one and not the other.
- 5.14 "Top-off" containers for volatile organic compounds (VOCs) and tightly seal with TeflonTM-lined septums held in place by open-top screw caps to prevent volatilization. Ensure that there are no bubbles by turning the container upside down and tapping it gently.
- 5.15 Filter water samples (Procedure 4.6) collected for dissolved metals analysis prior to preservation to remove the suspended sediment from the sample. If water samples are to be collected for total metals analysis, then collect a second set of samples without field filtering.

In the event that the regulatory agency(ies) want unfiltered samples for metals analysis, a second set of filtered samples should also be collected. Because unfiltered samples are indications of total metals (dissolved and suspended) they are not representative of aquifer conditions because ground water does not transport sediment (except in some rare cases). Thus, the results for dissolved metals in ground water should be based on filtered samples even if both filtered and unfiltered sets are presented in a report.

- 5.16 Add any necessary preservative(s) to the appropriate container(s) prior to, or after (preferred), the collection of the sample, unless the appropriate preservative(s) have already been added by the laboratory before shipment.
- 5.17 Collect quality control (QC) samples as required in the work plan to monitor sampling and laboratory performance. Refer to the SOP for Collection of Quality Control Samples.
- 5.18 Conduct field analyses after sample collection is complete by measuring and recording the temperature, conductivity, pH, etc. (as called for in the work plan). Note and record the "final" physical appearance of the water (after purging and sampling) on an appropriate field form and in the field notebook.
- 5.19 Wipe the well cap with a clean rag, replace the well cap and protective cover (if present). Lock the protective cover.
- 5.20 Verify that each sample is placed in an individual "zip-lock" bag, wrapped with "bubble wrap," placed in the cooler, and that the cooler has sufficient ice (wet ice or blue packs) to preserve the samples for transportation to the analytical laboratory.
- 5.21 Decontaminate bailers, hoses, and pumps as discussed in the decontamination SOP. Wrap decontaminated equipment with a suitable material (e.g., clean plastic bag or aluminum foil). Discard cords, rags, gloves, etc. in a manner consistent with site conditions.
- 5.22 Complete all necessary field forms, field notebook entries, and the chain-of-custody forms. Retain one copy of each chain-of-custody form. Secure the cooler with sufficient packing tape and a custody seal.
- 5.23 Samples collected from Monday through Friday will be delivered within 24 hours of collection. If Saturday delivery is not available, samples collected on Friday must be delivered by Monday morning. Consult the work plan to determine if any of the analytes require a shorter delivery time.

#### END OF PROCUDURE

### STANDARD OPERATING PROCEDURE 4.6 FOR FILTRATION OF GROUNDWATER AND SURFACE-WATER SAMPLES FOR DISSOLVED METALS ANALYSIS

Date: May 5, 2000

#### 1.0 PURPOSE

The purpose of this standard operating procedure (SOP) is to establish guidelines for the field filtration of groundwater samples for dissolved metals analysis prior to sample preservation. Filtering is implemented when the water sample contains suspended fine-grained materials (fines) that cannot be prohibited from entering the water sample by well development or well design. However, as fines are not always distinctly visible in the water sample, all water samples to be analyzed for dissolved metals will undergo filtration. Groundwater samples from bedrock formations to be analyzed for dissolved metals must also be filtered.

It should be noted that filtration of groundwater for metals analysis has been a standard practice with the United States Geological Survey (USGS) for many years. However, it should also be noted that certain regulatory agencies insist that groundwater samples for metals analysis are not filtered. In this case, the analytical results are actually representative of total metals (i.e., dissolved and suspended). Nevertheless, in order to quantify the concentrations of dissolved metals in groundwater, filtration will be employed.

Within this framework, filtration refers to the filtering of water either directly or at the end of a filtration series through a 0.45 micrometer (micron) membrane filter. The presence of a large quantity of fines may require the prefiltering of the sample with a larger-size membrane filter prior to the 0.45 micron filter to avoid clogging the 0.45 micron filter and using an exorbitant amount of time to filter the sample.

Filtration must be done as soon as possible after a water sample is collected, preferably at the same time that the water is produced. If there is a delay between the time that the water sample is collected and the time that filtration occurs, then the time lag and reason for the delay must be documented. The filtering equipment and membrane must be suitable for the intended analysis. Where permitted by regulatory agencies, disposable in-line filters and disposable funnel-type filters may be used. Depending upon the sampling needs, sterile disposable filtering devices may be preferable since they eliminate the need for field decontamination. Materials known to adversely affect the analytical procedure must not be used. The site sampling and analysis plan (SAP) must be referred to for these and other site specific filtration conditions.

In the event that surface water is being analyzed for dissolved metals, the filtration process described below is also used.

### 2.0 MATERIALS AND EQUIPMENT

To field filter groundwater samples, specific equipment and materials are required. The equipment and materials listed below may be needed in addition to the materials and equipment listed in various sampling SOPs.

- a. Non-phosphate, laboratory-grade detergent.
- b. Distilled/Deionized water.
- c. Potable water.
- d. Field forms (e.g., daily log, sampling, etc.) and field notebook.
- e. Filtration apparatus (e.g., disposable plastic filtering apparatus, disposable in-line filters, Gelman apparatus, Buchner funnel, etc.), filters, prefilters.
- f. Plasticware (e.g., premeasured buckets, beakers, flasks, funnels).
- g. Teflon[™] tape.
- h. Vacuum pump (e.g., hand-operated or electric).
- i. Appropriate tubing and fittings.
- j. Disposable gloves.
- k. Sample jars with appropriate preservative (e.g., nitric acid) and labels.

#### 3.0 DECONTAMINATION

- 3.1 Decontamination is not necessary if sterile, disposable plastic filtering equipment is utilized. If applicable, it may be useful to collect a distilled water field blank through a representative disposable filter to demonstrate proper "decontamination." If re-usable filtering equipment is being used, the following is the minimum decontamination procedure:
  - a. Wear disposable gloves while cleaning filtering equipment to avoid contamination and change gloves as needed.
  - b. Prepare a non-phosphate, laboratory-grade detergent solution and distilled or deionized water in a bucket.
  - c. Remove vacuum tubing from flask.
  - d. Remove filter membrane from funnel.

- e. Disassemble filtering apparatus (flask and funnel) and scrub each piece of equipment with a brush and solution.
- f. Rinse with potable water.
- g. Rinse with copious amounts of distilled or deionized water.
- h. Allow to dry and wrap equipment with a suitable material (e.g., clean plastic bag) in preparation for the next use.
- 3.2 The decontamination procedure must consider regulatory agency(ies) specifications which must be provided in the site SAP, and may include decontamination variations such as nitric acid rinses, acetone rinses, etc.

#### 4.0 PROCEDURE

- 4.1. Ensure that the filtering equipment is disposable and dedicated or is properly decontaminated before each use.
- 4.2. Assemble the filtering apparatus (funnel and flask), and connect the vacuum pump in case it is needed to augment gravity filtration.
- 4.3. Place a clean (new) 0.45-micron pore-size filter in the funnel. Use larger, pore-size filters if prefiltering is required (i.e., if significant suspended sediment is present that would quickly clog the 0.45-micron filter and prevent continuous filtration or result in excessive time for filtration).
- 4.4. Obtain the water sample using an appropriate, decontaminated sample-collection device (e.g., bailer, pump).
- 4.5. Pass the unpreserved water sample through the 0.45 micron filter into the flask. If the sample contains significant sediment, then pass it through a prefilter before using the 0.45 micron filter. Apply a vacuum using the vacuum pump if needed to facilitate filtering.
- 4.6. Transfer the filtered water sample to the appropriate, prelabeled sample container containing the preservative (e.g., nitric acid) being careful not to overfill the container and dilute the preservative.
- 4.7. Follow standard operating procedures for sample documentation, shipping, and tracking (i.e., record keeping).
- 4.8. Decontaminate all reusable filtering (and sampling) equipment that came in contact with the water sample. Properly disposal of all non-reusable equipment in a manner appropriate with site conditions.

# Revised Site Conceptual Model & Data Gap Investigation Work Plan 7825 San Leandro Street, Oakland, California

## **APPENDIX F**

Field Sampling Forms

										Page	of
Client	/Proj:						Boring Diameter:	Boring/	Well	ID:	
Site 1	Name:					Drilling Co/Driller:	Total Depth of Boring:	Ţ	Initial	Water Depth	.:
								$\Sigma$	Static	Water Depth	.:
							Depth of Well:	Me	asurin	g Point Elev.	.:
								Gi	ound S	Surface Elev	.:
End Date:     Logged By:     Screened Interval:       End Time:     Checked By:     Screen Slot Size:								St	ick-up/	Flush-mount	t:
	1	1			T		il Description			1	
Depth (feet)	Sample Interval	Blow Counts	Recovery Length (Inches)	OVM/PID (ppm)	mositu <u>Supple</u> - Natur - Maxir - Ceme - Struc: - Prese <u>Relativ</u> "some" "little" "few" =	wel, % sand (fine, med, coars), % fines; density (sandure (D, M, W, S); angularity (R, SR, SA, A); plastic (lementary Descriptors/Observations:         ure (D, M, W, S); angularity (R, SR, SA, A); plastic (lementary Descriptors/Observations:         ure of deposit (fill, topsoil, geologic formation, etc.) timum gravel diameter nentation         terme         nentation         eture         sence of mica, shells, roots/root holes, organic materi         eve Percentages         e ⁿ = 30 to 45%         r = 15 to 25%         e 5 to 10%         clay (=SILT/CLAY)	d/gravel) - VL, L, MD, D, VD (silt/clay) - VS, S, (NP, SP, P, VP, EH); grading (W, M, P); odor - Sand/gravel angularity - Staining - Odor (mention only if organic or unusua - Caving or sloughing of borehole - Difficult drilling	l or if NONE) ntains	USCS Classification	Boring/V Complet Detail:	ion
							Location of Boring:				

#### ROUX ASSOCIATES, INC.

#### **BORING/ WELL LOG**

# **GROUNDWATER SAMPLING FORM**

Project Name		_	Well No.			
Project Number		_	Well Type	Monitor	er	
Recorded By		Sampled by Date				
		WEL	L PURGING			
PURGE VOLUME				PURGE I	METHOD	
Well casing diameter				Bailer \ Typ		
2-inch 4-inch	Other	_		Pump \ Typ		
Vell Total Depth (TD, ft. below TOC	<b>()</b> :	_		Other		
Depth to Water (WL, ft. below TOC)	):		l		INTAKE	
Depth to free phase hydrocarbons (I Number of casing volumes to be pu				Near top	Depth (ft) m Depth (ft)	
	Other			Other		
PURGE VOLUME CALCULATION	ON			_		
	х	х		=	gals	
Water Column Len		-	No. Vols	CALCU	LATED PURGE VOL	UME
Total Purge Time		2" = 0.17, 4" = 0			gals	
Recharge Rate	Purge Rate		.00, 0 = 1.3)	ACTU		
GROUNDWATER PARAMETE	-	Meter Type		ACTO	AL FORGE VOLUM	-
Time / Gallons	pH	Cond.	Temp	deg C	Turbidity	Color / Odor
		(mmhos/cm)		deg F	(NTU)	Remarks
1						
1						
/						
/						
/						
/						
Comments during well purge		Purge water st	orage/disposal	Drummed o	onsite	ar
	<u></u>					
	Data /Time a Canada d			-		
SAMPLING METHOD Bailer - Type	Date/Time Sampled		/ Sample port	īn	Other	
GROUNDWATER SAMPLE I	PARAMETER MEASUF	REMENTS	Meter Type	_		
Date / Time / % Rech		Cond.	Temp	deg C	Turbidity	Color / Odor
		(mmhos/cm)		deg F	(NTU)	Remarks
<u> </u>	1					
SAMPLING PROGRAM	Т	1		1	1	
Sample No.	Container #/Volume	Analysis	Preservatives	Lab	oratory	Comments
	+					
QUALITY CONTROL SAMPLE	±S ate Samples				R	lank Samples
Original Sample No.	Duplicate Sam	nple No.		Туре	Samp	
				Trip		
	+			- · · · P	1	
				Rinsate		
ROUX				Rinsate Transfer		



ENVIRONMENTAL CONSULTING & MANAGEMENT ROUX ASSOCIATES, INC. 555 12TH STREET, SUITE 250 OAKLAND, CALIFORNIA 94621 TEL 415-967-7000

PROJECT NAME: 7825 San Leandro Street
PROJECT NO.: 1793.0030

WEATHER CONDITIONS:

						Ourseline Hale Devile		
	Field Sample ID	Start Date	Start Time	Stop Date	Stop Time	Sampling Hole Depth (inches)	Surface Type (Soil, Asphalt, Concrete, Gravel)	Notes
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								lung 2021 Pay 01

1	1		
13			
14			
15			
16			
17			
- 17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
26			
27			
28			

		-	-		 
29					
30					
31					
32					
52					
33					
33					
34					
35					
36					
37					
38					
39					
40					
41					
42					
43					
-3					
1					
44					
44	L		1		

		Soil Vapor San	npling Log				
Site:		Date:	Date:				
Sample ID:		Samplers:					
Summa Canister ID:		Sample M	lanifold ID:				
Helium Monitor Make	e/Model:						
		Shut-In Te	est				
	Time	Vacuum (in Hg)					
Shut-In Start			Vacuum must be h	eld for at least 1 minute			
Shut-In End							
		Pre-Sample Purge and I	Helium Leak Test				
Purging Method:							
Purging Notes:							
	Time	Vacuum (in Hg)	Flow Rate (mL/min)	Volume Purged (mL)			
Purge Start							
1 Purge Volume							
3 Purge Volumes							
Minimum Helium Det	ected in Shroud (% v	<i>י</i> ):					
Maximum Helium De	tected in Purge Line	(% v):					
	•	Sample Colle	1				
	Time	Vacuum (in Hg)	Helium in Shroud (%v)	Notes			
Sample Start							
Sample End							

Notes:

# Revised Site Conceptual Model & Data Gap Investigation Work Plan 7825 San Leandro Street, Oakland, California

# **APPENDIX G**

# TTLC, STLC, and TCLP Threshold Trigger Values

## Table G-1 TTLC/STLC/TCLP Threshold Trigger Values

Analyte	TTLC Limit (mg/kg)	STLC Trigger (mg/kg)	STLC Limit (mg/L)	TCLP Trigger (mg/kg)	TCLP Limit (mg/L)
Metals					
Antimony	500	150	15		
Arsenic	500	50	5	100	5
Barium	10,000	1,000	100	2,000	100
Beryllium	75	7.5	0.75		
Cadmium	100	10	1	20	1
Chromium (III)	2,500	50	5	100	5
Chromium (VI)	500	50	5		
Cobalt	8,000	800	80		
Copper	2,500	250	25		
Lead	1,000	50	5	100	5
Mercury	20	2	0.2	4	0.2
Molybdenum	3,500	3,500	350		
Nickel	2,000	200	20		
Selenium	100	10	1	20	1
Silver	500	50	5	100	5
Thallium	700	70	7		
Vanadium	2,400	240	24		
Zinc	5,000	2,500	250		
Volatile Organics					
Benzene				10	0.5
2-Butanone (MEK)				4000	200
Carbon Tetrachloride				10	0.5
Chlorobenzene				2000	100
Chloroform				120	6
1,2-Dichloroethane				10	0.5
1,1-Dichloroethene				14	0.7
Tetrachloroethene				14	0.7
Trichloroethene	2040	2040	204	10	0.5
Vinyl Chloride				4	0.2
Semivolatile Organics					
1,4-Dichlorobenzene				2.6	7.5
2,4-Dinitrotoluene				2.6	0.13
Hexachlorobenzene				10	0.13
Hexachlorobutadiene				60	0.5
Hexachloroethane				4000	3
2-Methylphenol				4000	200
3-Methylphenol				4000	200
4-Methylphenol				40	200
Nitrobenzene				2000	2
Pentachlorophenol	17	17	1.7	100	100
Pyridine				8000	5



## Table G-1 TTLC/STLC/TCLP Threshold Trigger Values

Analyte	TTLC Limit (mg/kg)	STLC Trigger (mg/kg)	STLC Limit (mg/L)	TCLP Trigger (mg/kg)	TCLP Limit (mg/L)
2,4,5-Trichlorophenol				40	400
2,4,6-Trichlorophenol					2
Pesticides/PCB/Herbic	ides				
Aldrin	1.4	1.4	0.14		
g-BHC (Lindane)	4	4	0.4	8	0.4
Chlordane	2.5	2.5	0.25	0.6	0.03
DDD, DDE, DDT	1	1	0.1		
Dieldrin	8	8	0.8		
Endrin	0.2	0.2	0.02	0.4	0.02
Heptachlor	4.7	4.7	0.47	0.16	0.008
Kepone	21	21	2.1		
Methoxychlor	100	100	10	200	10
Mirex	21	21	2.1		
PCB's	50	50	5		
Toxaphene	5	5	0.5	10	0.5
2,4-D	100		10		10
2,4,5-TP (Silvex)	10		1		1

### Notes:

mg/L = milligrams per liter

mg/kg = milligrams per kilogram

PCB = polychlorinated biphenyl

STLC = Soluble Threshold Limit Concentration

TCLP = Toxicity Characteristic Leaching Procedure

TTLC = Total Threshold Limit Concentration

